论文部分内容阅读
针对现有多目标微粒群算法存在容易陷于局部极值、收敛速度慢、函数评价次数多等不足,提出了一种多样性引导的2阶段多目标微粒群算法,依据种群多样性动态使用不同的变异方式,采用了2种不同的领导微粒选择方式,基于Pareto占优排序和拥挤距离来控制外部档案中解的数目。针对多个多目标测试函数进行了实验,并与其他文献的方法进行了比较,验证了算法的有效性。