论文部分内容阅读
现有算法实现了事务内到事务间最大频繁项目集的转换,能够直接发现不同用户之间的关联关系。但在处理较大的事务数据库时,由于是在原数据库基础上进行关联分析,产生了大量的虚假规则。针对上述问题提出一种基于聚类分析的事务间关联规则挖掘算法,利用聚类分析将初始的复杂的数据集进行约简,去掉冗余数据,缩小数据集,避免了多次扫描数据库和大量的虚假规则的产生。实验结果表明该方法比单独使用事务间的关联规则方法具有更高的效率,能更准确地预测用户的兴趣性。