论文部分内容阅读
为了及时准确地获取湿地基础信息,对湿地进行动态监测和保护。以扎龙湿地为研究区,以区域湿地遥感信息提取为目标,采用TM影像数据、DEM数据、归一化植被指数、纹理信息等复合识别指标构建决策树模型,对研究区不同地类进行分类。然后与传统的最大监督分类法所得到的结果进行对比。结果表明,采用基于指数的决策树分类方法对扎龙湿地类型进行分类,较传统的最大似然监督分类精度提高了14.6%;总体Kappa系数提高了0.1751,分类精度较监督分类有明显的提高,证明基于多源数据决策树分类方法是内陆淡水沼泽湿地信息提取的有