论文部分内容阅读
针对脑部核磁共振成像(MRI)图像因噪声、灰度不均匀、组织结构复杂及边界模糊不连续等造成肿瘤难以准确分割的问题,提出一种基于形态学多尺度修正的模糊C均值(FCM)聚类分割方法。首先根据邻域统计信息引入控制参数用于区分邻域中的噪声点、边缘点和区域内部点,结合空间位置信息建立像素与结构元素大小之间的函数关系;然后利用不同大小的结构元素对图像中不同类型像素进行形态学闭运算,消除对应于局部极小值的噪声干扰和非规则细节,而目标部分的区域轮廓位置基本保持不变;最后在修正基础上进行FCM聚类分割,避免FCM陷入局