论文部分内容阅读
针对风力发电机组齿轮箱变速过程中振动信号非平稳的特点,将阶次跟踪和信号包络提取技术相结合,提出了一种针对齿轮点蚀故障的诊断方法。首先利用Compact RIO对齿轮箱的振动信号进行了时域数据采集,然后对时域信号进行了包络提取,进而对时域包络信号进行等角域重采样得到等角域包络信号,最后对等角域包络信号进行了阶次跟踪分析;通过对比正常齿轮和点蚀故障齿轮的包络阶次谱,进而找到了点蚀故障齿轮的故障频率特征。模拟仿真结果表明,阶次跟踪分析可以解决传统傅里叶变换在处理非平稳信号时的“频谱模糊”现象。通过齿轮点蚀故障试