论文部分内容阅读
遥感影像的统计分类中,通常都将像点特征的集合视为概率密度函数的混合分布,EM算法是求解这种混合模型参数的一个常用方法。但EM算法在给定合适初值的情况下,对训练数据中的噪声非常敏感,这将严重影响算法的运行效率和求取参数的精度。为了解决这个问题,本文提出了EM算法的模糊化策略,以此来减少噪声在参数学习过程中的影响。对遥感影像的分类实验表明,经过模糊化的EM算法能够更好地完成影像数据的分类。