论文部分内容阅读
针对PID控制中的参数整定的难点及基本BP算法收敛速度慢、易陷入局部极值的问题,提出利用PSO算法的全局寻优能力和较强的收敛性来改进BP网络的权值调整新方法,从而对PID控制的比例、积分、微分进行优化控制。该方法是在基本BP算法的误差反向传播的基础上,使粒子位置的更新对应BP网络的权值和阈值的调整,既充分利用了PSO算法的全局寻优性又较好地保持了BP算法本身的反向传播特点。仿真结果表明基于PSO算法的BP神经网络的PID优化控制具有较好的性能和自学习、自适应性。