论文部分内容阅读
讨论了四种不同MCMC抽样方案在SV模型贝叶斯估计中的适应性和稳健性问题。蒙特卡洛模拟结果显示,随机误差项的近似处理方式和波动变量抽样结构直接影响SV模型的贝叶斯估计效率。具体来说,波动变量的"成块"抽样比"逐分量"抽样的效率更高;随机误差项有限混合近似比正态近似的估计精度更优。四种抽样方案中,正态近似和FFBS算法的收敛速度和运算时间最快,有限混合近似和FFBS算法的估计精度最优。