论文部分内容阅读
考虑自然图像的先验稀疏结构及其特征子空间的局部性,在局部非负矩阵分解(LNMF)算法的基础上,提出一种具有稀疏约束的局部非负矩阵分解(SC-LNMF)神经网络算法。使用两类自然属性不同的图像在不同的维数下对SC-LNMF网络进行训练,该方法都能成功地提取出训练图像的局部特征。与NMF、LNMF特征提取方法相比,实验对比结果证明了SC-LNMF算法能够模拟大脑初级视觉系统V1区感受野的特性,进一步证实了该算法在图像局部特征提取中的有效性和实用性。