论文部分内容阅读
多尺度变换域隐马尔可夫模型能够有效地描述变换域系数在尺度间、尺度内和方向间的统计相关性,是一种新的统计图像感知与识别方法.文中以变换域系数的统计相关性描述为中心,以模型的设计和应用的开展为两翼,深入分析了子波变换的三级统计特性与机理,比较研究了多尺度变换域的十种统计模型,并系统评述了这些模型在图像感知、处理和分析中的最新进展.同时,具体论述了这一领域研究中两类成功的实例:图像去噪和图像纹理分割.对于前者,以Lena图像为测试用例分析比较了以变换域统计模型为核心的8种算法的去噪性能;对于后者,按照分割类型(