论文部分内容阅读
The lack of efficient and non-toxic gene delivery, preferably with non-viral DNA vectors, is generally regarded as a major limitation for gene therapy. In this study, a wheat histone H4 gene was cloned from Triticum aestivum, sequenced, modified and expressed in E. coli. The wheat histone H4 gene and reconstructed H4TL gene encoded wheat histone H4 and a recombinant protein of 141 amino acids with an approximate molecular weight of 15500. Gel electrophoresis mobility shift assays demonstrated that the purified protein had high affinity for DNA. Most significantly, the complex of plasmid pEGFP/C1 with H4TL was transfected with increased efficiency into MCF-7, HO8910, LNCap, A549 and HeLa cells in vitro. These results demonstrate that the targeting of non-viral vectors to tumor-specific receptors provides a cheap, simple and highly efficient tool for gene delivery.
The lack of efficient and non-toxic gene delivery, preferably with non-viral DNA vectors, is generally regarded as a major limitation for gene therapy. In this study, a wheat histone H4 gene was cloned from Triticum aestivum, sequenced, modified and expressed in E. coli. The wheat histone H4 gene and reconstructed H4TL gene encoded wheat histone H4 and a recombinant protein of 141 amino acids with an approximate molecular weight of 15500. Gel electrophoresis mobility shift assays of that the purified protein had high affinity for DNA. Most significantly, the complex of plasmid pEGFP / C1 with H4TL was transfected with increased efficiency into MCF-7, HO8910, LNCap, A549 and HeLa cells in vitro. These results demonstrate that the targeting of non-viral vectors to tumor-specific receptors provides a cheap, simple and highly efficient tool for gene delivery.