论文部分内容阅读
夜间环境下人车的检测与识别在自动驾驶,安防等领域具有重要意义。本文提出使用性价比较高的低分辨率红外热成像摄像机拍摄的图像来进行夜间的人车检测与识别,并根据图像独特的性质对Faster RCNN网络进行了优化。增加多通道卷积层来适应热成像图像的灰度特性。使用全局平均池化层来适应较少的图像及类别数量,增加批标准化层来防止加深加宽网络后可能出现的梯度消失或爆炸。使用在城市夜间环境中采集的2000张低分辨率热成像图像对网络进行训练与测试,平均准确识别率达到71.3%。相比于传统的检测手段,本组合方法在真实的