基于支持向量机的恶意软件行为评估系统

来源 :计算机应用 | 被引量 : 34次 | 上传用户:lonlinyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为解决恶意软件行为分析系统中分类准确率较低的问题,提出了一种基于支持向量机(SVM)的恶意软件分类方法。首先人工建立了一个以软件行为结果作为特征的危险行为库;然后捕获软件所有行为,并与危险行为库进行匹配,通过样本转换算法将匹配结果变成适合SVM处理的数据,再利用SVM进行分类。在SVM模型、核函数以及参数对(C,g)的选择方面先进行理论分析确定大致范围,再使用网格搜索和遗传算法(GA)相结合的方式进行寻优。为验证所提恶意软件分类方法的有效性,设计了一个基于SVM模型的恶意软件行为评估系统。实验结果表
其他文献
针对串行粒子群算法在解决大任务耗时过长的问题,提出一种共享并行粒子群(Shared-PSO)算法。充分利用多核处理能力缩短问题处理运行时间,设置共享区和采取粒子随机替换策略有效促进粒子信息的交流,其算法流程具有较好的通用性,允许利用多种串行粒子群算法完成粒子信息更新工作。在标准优化测试集CEC 2014上的实验结果显示新算法的执行时间是串行算法的1/4。新算法能够有效地改善串行粒子群的执行效率,扩
期刊