论文部分内容阅读
由第一类零阶贝塞尔函数的级数展开推导出波结构函数在任意湍流条件下的近似表达式。由广义惠更斯-菲涅耳原理、随高度变化的Hufnagel-Valley湍流廓线模型以及波结构函数在任意湍流条件下的近似表达式,导出了斜程传输时准单色高斯-谢尔光束互相干函数的解析式。然后,利用表征光束时间相干性的纵向相干长度(可由互相干函数导出),研究了斜程传输时大气湍流对准单色高斯-谢尔光束时间相干性的影响。研究结果表明,准单色高斯-谢尔光束的时间相干性在整个斜程传输过程中保持不变。最后,对该结果在物理上给予了定性解释。
The approximate expression of wave structure function under arbitrary turbulent conditions is deduced from the series expansion of the first kind of Bessel function of zero order. From the generalized Huygens-Fresnel principle, the highly variable Hufnagel-Valley turbulence profile model and the approximate expression of the wave structure function under arbitrary turbulent flow conditions, the quasi-monochromatic Gaussian-Schell beam Analytic formula of mutual function. Then, the influence of atmospheric turbulence on the temporal coherence of monochromatic Gaussian-Schell beams is studied by using the longitudinal coherence length (which can be derived from each other’s coherence function) that characterizes the temporal coherence of the beams. The results show that the temporal coherence of the quasi-monochromatic Gaussian-Schell beam remains constant over the entire range of the transmission. Finally, the result is given a qualitative explanation.