论文部分内容阅读
通过极化曲线法、失重法和气体加速腐蚀法研究了咪唑(IA)、苯并咪唑(BIA)、巯基苯并四氮唑(PMTA)、苯并三氮唑(BTA)、巯基苯并噻唑(MBT)等五种缓蚀剂对青铜的缓蚀作用.实验发现,MBT的效果最好.在50℃、3.5%NaCl溶液加速腐蚀条件下,在缓蚀剂浓度为10-2mol·L-1时,MBT的缓蚀效率为99.1%,而BTA的缓蚀效率为92.4%.经MBT处理后的青铜样块,色泽无明显变化,且有一定的耐酸碱能力.复合缓蚀剂[(MBT+BTA)或(MBT+PMTA)]在低浓度时比单一缓蚀剂的效果好.红外光谱表明,铜与杂环上有孤对电子的硫、巯基上的硫及氮配位.铜与MBT可能形成面型配合物膜,其成膜速度及覆盖度均较BTA为大.
The effects of imidazole (IA), benzimidazole (BIA), mercaptobenzotetrazole (PMTA), benzotriazole (BTA), mercaptobenzothiazole (MBT) and other corrosion inhibitors on corrosion inhibition of bronze. The experiment found that MBT works best. Under the condition of 50 ℃ and 3.5% NaCl accelerated corrosion, the inhibition efficiency of MBT is 99.1% at the concentration of 10-2mol·L-1, while the inhibition efficiency of BTA is 92. 4%. After the MBT treatment of bronze samples, no significant change in color, and have some acid and alkali resistance. Compound corrosion inhibitors [(MBT + BTA) or (MBT + PMTA)] performed better than single corrosion inhibitors at low concentrations. Infrared spectroscopy shows that copper has a lone pair of electrons on the heterocyclic ring, sulfur and nitrogen on the sulfhydryl group. Copper and MBT may form a surface complex film, the deposition rate and coverage of BTA are larger than BTA.