论文部分内容阅读
针对图像分类特征点特性界定模糊,导致相似性度量误差较大的问题,提出采用特征点类别可分性判断准则的图像分类方法。结合信息熵理论提取图像特征点的可分性特性,根据图像特征向量标识决策属性的不同性质,计算特征向量间的可分性距离值,得到最近邻特征向量集,从待分图像各特征向量与最近邻特征向量集标识类别的平均距离,及平均可分性度量值两方面定义新的图像类别判断准则。理论分析与Caltech256图像库仿真实验表明,基于特征点类别可分性判断准则有效地提高了图像的分类准确率。