论文部分内容阅读
为解决无人驾驶车辆在城市路况下对多个动态障碍物同时检测和跟踪的关键问题,提出一种基于三维激光雷达的多目标实时检测和跟踪方法。通过对单帧激光雷达点云数据进行聚类,提取障碍物外接矩形轮廓特征;采用多假设跟踪模型(MHT)算法对连续两帧的障碍物信息进行数据关联;利用卡尔曼滤波算法对动态障碍物进行连续地预测和跟踪。试验结果表明,该算法能够在自行搭建的智能车平台上以每帧100 ms的速度准确、稳定地检测和跟踪。