论文部分内容阅读
神经网络是模式识别中一种常见的分类器。针对同一个分类问题,构建多个分类器并把多个分类器进行融合可以提高分类系统的分类正确率、改善系统的稳健性。首先介绍了Sugeno模糊积分及Sugeno模糊积分神经网络分类器融合方法的一般原理,而后将其应用于手写数字识别,通过实际的案例验证了该融合方法的有效性和可行性。