论文部分内容阅读
The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrO2-Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.