论文部分内容阅读
准确高效的乳腺超声病灶提取技术具有重要应用价值,但超声图像灰度不均匀、伪影重、噪声强、乳腺病灶区域与周围组织相似度较高等特有属性给自动分割带来很大挑战。RSF模型是一种较为成功的图像分割方法,但对初始轮廓和噪声较敏感,直接用于病灶提取有待改进。针对图像局部分割需求,通过预提取初始分割区域作为水平集的初始条件,有助于提高分割精度;以局部能量为主导,较好地处理灰度不匀的超声特质,增加全局能量项以使零水平集能够更好地定位在弱边界;引入灰度变化率作用以提高轮廓在灰度匀质部分的演化速度。分割实验结果表明,该方