论文部分内容阅读
近年来,随着智能手机的快速发展,低头族行人在过马路时依然保持浏览手机的姿态,由此造成的交通事故时有发生。如何有效检测低头族成为了当下亟待解决的问题。现有的检测方法需要大量的真实低头异常的数据集,且最终结果存在识别精度不高、速度不尽人意的问题。基于此,提出了一种快速有效的低头异常行人检测方法,与现有方法的区别在于该方法是基于关节点而不是图像。首先设计了一种构造数据集的方法,在识别人体关节点的基础上,调整左右腕关节坐标来模拟行人手持电子设备的姿态,解决了数据集缺少且需要大量标注的问题;其次,提出复杂环境