论文部分内容阅读
为了提高入侵检测系统的性能,研究了在入侵检测中如何采用数据挖掘中的关联和聚类算法。对于K-Means聚类算法具有的K值确定困难、易受初始值影响等问题,提出了一种预定距离的聚类方法。针对Apriofi关联算法扫描事务数据库次数过多,耗费大量的时间处理候选项集的缺陷,提出了改进的2项、3项频繁项集的矩阵挖掘算法。设计了改进的聚类、关联算法的入侵检测系统,并进行了实验。结果表明,该系统能降低误检率,提高检测效率,能够检测未知入侵类型。