论文部分内容阅读
本文介绍了在全尺寸飞机疲劳试验过程中的无损检测和声发射监测的技术细节,说明了如何根据监测目标任务要求,确定传感器位置和安装方案、进行声传播通道性能测试、材料声发射(AE)性能研究和考证整个检测系统工作的平稳性。讨论了如何合理设置数据采集系统的参数,研究了背景噪声的变化规律,并特别研究了同疲劳裂纹形成和扩展有关的声发射信号的特征及如何从强背景噪声环境中获得有用AE信号。论文以中央翼-外翼连接区域和起落架上枢轴接头等关键部位为例,说明实施监测的方法。由于疲劳试验特别强调监测结果的实时性和及时性,在声发射信号处理方面,作者利用趋势分析,基于时间、空间的滤波和基于幅度和能量分布等多种信号处理方式,以及多参数综合识别技术对一些关键部位的状态进行了声发射连续跟踪监测,为保证全尺寸飞机机体部件疲劳试验的顺利进行起到了重要作用。
This paper introduces the technical details of non-destructive testing and acoustic emission monitoring during the full-scale aircraft fatigue test. It shows how to determine the sensor position and installation scheme according to the monitoring target mission requirements, and to perform the acoustic propagation channel performance test, AE Performance study and verification of the stability of the entire testing system. This paper discusses how to set the parameters of data acquisition system reasonably, studies the changing rules of background noise, and especially studies the characteristics of AE signals related to fatigue crack formation and propagation and how to obtain useful AE signals from strong background noise environment. The paper takes the key wings such as central wing-outer wing connection area and landing gear pivot joint as examples to illustrate the method of monitoring. Due to the fatigue test emphasizes the real-time and timeliness of the monitoring results, the author uses trend analysis, time-space-based filtering and signal processing based on amplitude and energy distribution, and multi-parameter comprehensive identification The technology of some key parts of the state of continuous acoustic emission tracking monitoring, to ensure full-size aircraft body parts fatigue test played an important role.