论文部分内容阅读
为了防止链接攻击导致隐私的泄露,同时尽可能降低匿名保护时的信息损失,提出(λα,k)-分级匿名模型。该模型根据隐私保护的需求程度,将各敏感属性值划分为高、中、低三个等级类,通过隐私保护度参数λ灵活控制泄露风险。在此基础上,给出一种基于聚类的分级匿名方法。该方法采用一种新层次聚类算法,并针对准标识符中数值型属性与分类型属性采用灵活的概化策略。实验结果显示,该方法能够满足敏感属性的分级匿名保护需求,同时有效地减少信息损失。