论文部分内容阅读
[摘 要]机械产品的使用性能的提高和使用寿命的增加与组成产品的零件加工质量密切相关,零件的加工质量是保证产品质量基础。衡量零件加工质量好坏的主要指标有:加工精度和表面粗糙度。
[关键词]机械加工 表面质量 影响因素 控制措施
中图分类号:TM121.1.3 文献标识码:B 文章编号:1009-914X(2016)01-0057-01
一、加工过程对表面质量的影响
1、工艺系统的振动对工件表面质量的影响
在机械加工过程中工艺系统有时会发生振动,即在刀具的切削刃与工件上正在切削的表面之间除了名义上的切削运动之外,还会出现一种周期性的相对运动。
振动使工艺系统的各种成形运动受到干扰和破坏,使加工表面出现振纹,增大表面粗糙度值,恶化加工表面质量。
2、刀具几何参数、材料和刃磨质量对表面质量的影响
刀具的几何参数中对表面粗糙度影响最大主要是副偏角、主偏角、刀尖圆弧半径。在一定的条件下,减小副偏角、主偏角、刀尖圆弧半径都可以降低表面粗糙度。在同样条件下,硬质合金刀具加工的表面粗糙度值低于高速钢刀具,而金刚石、立方氮化硼刀具又优于硬质合金,但由于金刚石与铁族材料亲和力大,故不宜用来加工铁族材料。另外,刀具的前、后刀面、切削刃本身的粗糙度直接影响加工表面的粗糙度,因此,提高刀具的刃磨质量,使刀具前后刀面、切削刃的粗糙度值应低于工件的粗糙度值的1~2级。
3、切削液对表面质量的影响
切削液的冷却和润滑作用能减小切削过程中的界面摩擦,降低切削区温度,使切削层金属表面的塑性变形程度下降,抑制积屑瘤和鳞刺的产生,在生产中对于不同材料合理选用切削液可大大减小工件表面粗糙度。
4、工件材料对表面质量的影响
工件材料的性质;加工塑性材料时,由刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,使表面粗糙度值加大。工件材料韧性越好,金属的塑性变形越大,加工表面就愈越粗糙。加工脆性材料时其切屑呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点使表面粗糙。一般韧性较大的塑性材料,加工后表面粗糙度较大,而韧性较小的塑性材料,加工后易得到较小的表面粗糙度。对于同种材料,其晶粒组织越大,加工表面粗糙度越大。因此,为了减小加工表面粗糙度,常在切削加工前对材料进行调质或正火处理,以获得均匀细密的晶粒组织和较高的硬度。
5、切削条件对工件表面质量的影响
与切削条件有关的工艺因素,包括切削用量、冷却润滑情况。中、低速加工塑性材料时,容易产生积屑瘤和鳞刺,所以,提高切削速度,可以减少积屑瘤和鳞刺,减小零件已加工表面粗糙度值;对于脆性材料,一般不会形成积屑瘤和鳞刺,所以,切削速度对表面粗糙度基本上无影响。进给速度增大,塑性变形也增大,表面粗糙度值增大,所以,减小进给速度可以减小表面粗糙度值,但是,进给量减小到一定值时,粗糙度值不会明显下降。正常切削条件下,切削深度对表面粗糙度影响不大,因此,机械加工时不能选用过小的切削深度。
6、切削速度对表面粗糙度的影响
一般在粗加工选用低速车削,精加工选用高速车削可以减小表面粗糙度。在中速切削塑性材料时,由于容易产生积屑瘤,且塑性变形较大,因此加工后零件表面粗糙度较大。通常采用低速或高速切削塑性材料,可有效地避免积屑瘤的产生,这对减小表而粗糙度有积极作用。
二、影响工件表面物理机械性能的因素
1、表面层冷作硬化。切削刃钝圆半径增大,对表层金属的挤压作用增强,塑性变形加剧,导致冷硬增强。刀具后刀面磨损增大,后刀面与被加工表面的摩擦加剧,塑性变形增大,导致冷硬增强。切削速度增大,刀具与工件的作用时间缩短,使塑性变形扩展深度减小,冷硬层深度减小。切削速度增大后,切削热在工件表面层上的作用时间也缩短了,将使冷硬程度增加。进给量增大,切削力也增大,表层金属的塑性变形加剧,冷硬作用加强。工件材料的塑性愈大,冷硬现象就愈严重。
2、表面层材料金相组织变化。当切削热使被加工表面的温度超过相变温度后,表层金属的金相组织将会发生变化。(1)磨削烧伤当被磨工件表面层温度达到相变温度以上时,表层金属发生金相组织的变化,使表层金属强度和硬度降低,并伴有残余应力产生甚至出现微观裂纹,这种现象称为磨削烧伤。(2)改善磨削烧伤的途径磨削热是造成磨削烧伤的根源,故改善磨削烧伤由两个途径:一是尽可能地减少磨削热的产生;二是改善冷却条件,尽量使产生的热量少传入工件。正确选择砂轮合理选择切削用量改善冷却条件。
3、表面层残余应力。(1)产生残余应力的原因:①切削时在加工表面金属层内有塑性变形发生,使表面金属的比容加大;②切削加工中,切削区会有大量的切削热产生;③不同金相组织具有不同的密度,亦具有不同的比容的变化必然要受到与相连的基体金属的阻碍,因而就有残余应力产生。(2)工件主要工作表面最终工序加工方法的选择。选择零件主要工作表面最终工序加工方法,须考虑该零件主要工作表面的具体工作条件和可能的损坏形式。在交变载荷作用下,机器零件表面上的局部微观裂纹,会因拉应力的作用使原生裂纹扩大,最后导致零件断裂。从提高零件抵抗疲劳破坏的角度考虑,该表面最终工序应选择能在该表面产生残余压应力的加工方法。在切削加工过程中,刀具对工件的挤压和摩擦使金属材料发生塑性变形,引起原有的残留面积扭曲或沟纹加深,增大表面粗糙度。当采用中等或中等偏低的切削速度切削塑性材料时,在前刀面上容易形成硬度很高的积屑瘤,它可以代替刀具进行切削,但状态极不稳定,积屑瘤生成、长大和脱落将严重影响加工表面的表面粗糙度值。另外,在切削过程中由于切屑和前刀面的强烈摩擦作用以及撕裂现象,还可能在加工表面上产生鳞刺,使加工表面的粗糙度增加。
参考文献
[1] 闫德明.浅析影响机械加工表面质量的因素及措施[J]. 山西科技. 2015(01).
[2] 刘丽萍.浅析影响机械加工零件表面质量的因素及其改进策略[J]. 机電信息. 2014(30).
[3]丁延松.影响机械加工表面质量的因素及改进措施[J]. 技术与市场. 2014(05).
[关键词]机械加工 表面质量 影响因素 控制措施
中图分类号:TM121.1.3 文献标识码:B 文章编号:1009-914X(2016)01-0057-01
一、加工过程对表面质量的影响
1、工艺系统的振动对工件表面质量的影响
在机械加工过程中工艺系统有时会发生振动,即在刀具的切削刃与工件上正在切削的表面之间除了名义上的切削运动之外,还会出现一种周期性的相对运动。
振动使工艺系统的各种成形运动受到干扰和破坏,使加工表面出现振纹,增大表面粗糙度值,恶化加工表面质量。
2、刀具几何参数、材料和刃磨质量对表面质量的影响
刀具的几何参数中对表面粗糙度影响最大主要是副偏角、主偏角、刀尖圆弧半径。在一定的条件下,减小副偏角、主偏角、刀尖圆弧半径都可以降低表面粗糙度。在同样条件下,硬质合金刀具加工的表面粗糙度值低于高速钢刀具,而金刚石、立方氮化硼刀具又优于硬质合金,但由于金刚石与铁族材料亲和力大,故不宜用来加工铁族材料。另外,刀具的前、后刀面、切削刃本身的粗糙度直接影响加工表面的粗糙度,因此,提高刀具的刃磨质量,使刀具前后刀面、切削刃的粗糙度值应低于工件的粗糙度值的1~2级。
3、切削液对表面质量的影响
切削液的冷却和润滑作用能减小切削过程中的界面摩擦,降低切削区温度,使切削层金属表面的塑性变形程度下降,抑制积屑瘤和鳞刺的产生,在生产中对于不同材料合理选用切削液可大大减小工件表面粗糙度。
4、工件材料对表面质量的影响
工件材料的性质;加工塑性材料时,由刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,使表面粗糙度值加大。工件材料韧性越好,金属的塑性变形越大,加工表面就愈越粗糙。加工脆性材料时其切屑呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点使表面粗糙。一般韧性较大的塑性材料,加工后表面粗糙度较大,而韧性较小的塑性材料,加工后易得到较小的表面粗糙度。对于同种材料,其晶粒组织越大,加工表面粗糙度越大。因此,为了减小加工表面粗糙度,常在切削加工前对材料进行调质或正火处理,以获得均匀细密的晶粒组织和较高的硬度。
5、切削条件对工件表面质量的影响
与切削条件有关的工艺因素,包括切削用量、冷却润滑情况。中、低速加工塑性材料时,容易产生积屑瘤和鳞刺,所以,提高切削速度,可以减少积屑瘤和鳞刺,减小零件已加工表面粗糙度值;对于脆性材料,一般不会形成积屑瘤和鳞刺,所以,切削速度对表面粗糙度基本上无影响。进给速度增大,塑性变形也增大,表面粗糙度值增大,所以,减小进给速度可以减小表面粗糙度值,但是,进给量减小到一定值时,粗糙度值不会明显下降。正常切削条件下,切削深度对表面粗糙度影响不大,因此,机械加工时不能选用过小的切削深度。
6、切削速度对表面粗糙度的影响
一般在粗加工选用低速车削,精加工选用高速车削可以减小表面粗糙度。在中速切削塑性材料时,由于容易产生积屑瘤,且塑性变形较大,因此加工后零件表面粗糙度较大。通常采用低速或高速切削塑性材料,可有效地避免积屑瘤的产生,这对减小表而粗糙度有积极作用。
二、影响工件表面物理机械性能的因素
1、表面层冷作硬化。切削刃钝圆半径增大,对表层金属的挤压作用增强,塑性变形加剧,导致冷硬增强。刀具后刀面磨损增大,后刀面与被加工表面的摩擦加剧,塑性变形增大,导致冷硬增强。切削速度增大,刀具与工件的作用时间缩短,使塑性变形扩展深度减小,冷硬层深度减小。切削速度增大后,切削热在工件表面层上的作用时间也缩短了,将使冷硬程度增加。进给量增大,切削力也增大,表层金属的塑性变形加剧,冷硬作用加强。工件材料的塑性愈大,冷硬现象就愈严重。
2、表面层材料金相组织变化。当切削热使被加工表面的温度超过相变温度后,表层金属的金相组织将会发生变化。(1)磨削烧伤当被磨工件表面层温度达到相变温度以上时,表层金属发生金相组织的变化,使表层金属强度和硬度降低,并伴有残余应力产生甚至出现微观裂纹,这种现象称为磨削烧伤。(2)改善磨削烧伤的途径磨削热是造成磨削烧伤的根源,故改善磨削烧伤由两个途径:一是尽可能地减少磨削热的产生;二是改善冷却条件,尽量使产生的热量少传入工件。正确选择砂轮合理选择切削用量改善冷却条件。
3、表面层残余应力。(1)产生残余应力的原因:①切削时在加工表面金属层内有塑性变形发生,使表面金属的比容加大;②切削加工中,切削区会有大量的切削热产生;③不同金相组织具有不同的密度,亦具有不同的比容的变化必然要受到与相连的基体金属的阻碍,因而就有残余应力产生。(2)工件主要工作表面最终工序加工方法的选择。选择零件主要工作表面最终工序加工方法,须考虑该零件主要工作表面的具体工作条件和可能的损坏形式。在交变载荷作用下,机器零件表面上的局部微观裂纹,会因拉应力的作用使原生裂纹扩大,最后导致零件断裂。从提高零件抵抗疲劳破坏的角度考虑,该表面最终工序应选择能在该表面产生残余压应力的加工方法。在切削加工过程中,刀具对工件的挤压和摩擦使金属材料发生塑性变形,引起原有的残留面积扭曲或沟纹加深,增大表面粗糙度。当采用中等或中等偏低的切削速度切削塑性材料时,在前刀面上容易形成硬度很高的积屑瘤,它可以代替刀具进行切削,但状态极不稳定,积屑瘤生成、长大和脱落将严重影响加工表面的表面粗糙度值。另外,在切削过程中由于切屑和前刀面的强烈摩擦作用以及撕裂现象,还可能在加工表面上产生鳞刺,使加工表面的粗糙度增加。
参考文献
[1] 闫德明.浅析影响机械加工表面质量的因素及措施[J]. 山西科技. 2015(01).
[2] 刘丽萍.浅析影响机械加工零件表面质量的因素及其改进策略[J]. 机電信息. 2014(30).
[3]丁延松.影响机械加工表面质量的因素及改进措施[J]. 技术与市场. 2014(05).