论文部分内容阅读
针对训练径向基函数(RBF)神经网络均衡器的随机梯度算法(SG)中,神经网络的结构是指定的并且所用训练样本较长的问题,引入进化规划思想,用进化规划方法确定径向基函数神经网络的结构,用基于最小均方(LMS)误差准则的自适应算法调整神经元到输出端的连接权重.蒙特卡洛仿真表明,用这种方法确定的均衡器可以达到与SG算法相同的性能,而所用训练样本很少,网络结构不需要事先指定.