弦上同调的Hodge结构

来源 :数学学报 | 被引量 : 0次 | 上传用户:liongliong497
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对于一个满足“强Lefschetz条件”的K?hler SL-G-流形(X,ω),本文在弦上同调Hk(X,G)上构造了一个Hodge结构,在素弦上同调FHk(X,ω,G)上构造了一个极化Hodge结构,然后通过弦Dolbeault上同调H*,*(X,G)在H*(X,G)上得到了一个被X上所有K?hler类所极化的混合Hodge结构.所有这些(极化混合)Hodge结构都附带一个自然的G-作用.本文证明这些(极化混合)Hodge结构的G-不变部分同构于对应的整体商K?hler SL-轨形(X=[X/G],σ)的Chen-Ruan上同调群的(极化混合)Hodge结构,其中σ是由ω所诱导的X上的K?hler形式.
其他文献
This paper is concerned with the Fisher-KPP equation with diffusion and non-local delay.Firstly,we establish the global existence and uniform boundedness of sol
设A是含单位元I的C*-代数,Φ:A→A是满射.本文证明Φ强保k-skew 交换性,即*[Φ(A),Φ(B)]k=*[A,B]k,■A,B ∈ A 当且仅当Φ(A)=Φ(I)A,■A ∈ A,其中Φ(I)∈L(A),Φ(I)*=Φ(I),Φ(I)k+1=I,L(A)是 A 的中心.特别地,若L(A)=CI,则Φ:A→A强保k-skew交换性当且仅当Φ(A)=A,■A ∈A或Φ(A)=-A,VA ∈A.若k是偶数,后一种情形不会出现.
In this paper,we consider the measure determined by a fractional Ornstein-Uhlenbeck process.For such a measure,we establish an explicit form of the martingale r
The reflection of a weak shock wave is considered using a shock polar.We present a sufficient condition under which the von Neumann paradox appears for the Eule
本文研究沿实解析子流形的粗糙核Marcinkiewicz积分的Lp映射性质,假设径向核h∈Δγ(R+)(γ∈(1,∞])与球面核Ω∈Lq(Sn-1)(q∈(1,2]),建立了这类算子的Lp有界性.而且,通过外插的方法,在一些最佳的球面尺寸条件Ω∈L(logL)1/2(Sn-1)或Ω∈Bq(0,-1/2)(Sn-1)(q>1)下,获得了相应的Lp界.与此同时,也考虑了相关极大粗糙核Marcinkiewicz积分的Lp估计.
本文主要讨论单位圆盘上指数权Bergman空间Aφp和Aφ(0<p<∞)之间由正Borel测度μ所诱导的Toeplitz算子Tμ,借助Berezin变换和平均函数刻画该类算子的有界性和紧性.
In this paper,we show that,on the Dirichlet-type space of unit disk,the essential norm of a noncompact Toeplitz operator equals its distance to the set of compact Toeplitz operators,and moreover,this distance is realized by infinitely many compact Toeplit
This paper considers the inverse acoustic wave scattering by a bounded penetra-ble obstacle with a conductive boundary condition.We will show that the penetrabl
Let f be a twice continuously differentiable self-mapping of a unit disk satisfying Poisson differential inequality |△f(z)|≤B·|Df(z)|2 for some B>0 and f(0)=
We prove that, as in the finite dimensional case, the space of Bloch functions on the unit ball of a Hilbert space contains, under very mild conditions, any semi-Banach space of analytic functions invariant under automorphisms. The multipliers for such Bl