论文部分内容阅读
作为一种基于正定核的学习方法,传统支持向量机(Support Vector Machine,SVM)能较好地解决小样本、非线性、过学习、维数灾和局部极小等问题,从而广泛应用于模式识别、回归估计等领域。当前,核方法及其在故障诊断中的应用引起了人们的广泛重视并成为研究热点。为解决传统支持向量对核函数正定性的限制及求解速度不高的缺陷,通过引入最小二乘支持向量机分类算法提高学习速度,采用隐核特征映射技术实现核函数的进一步扩展,提出了一种新的隐核最小二乘分类器(HKLSC)算法。将其应用于实际工业过程的故障诊