论文部分内容阅读
分析了当存在高斯背景噪声时一类盲分离算法的性能,指出此时盲分离算法仍可用于估计解混矩阵,而输出信号为分离的源信号与高斯噪声的叠加。利用现代时间序列分析方法(MTSSAM)建立了输出信号的自回归移动平均(ARMA)新息模型,并给出了一种基于多维线性最小二乘法的信号滤渡算法。仿真试验表明,该算法稳定且收敛,可以在背景噪声存在时有效地恢复源信号的波形。