论文部分内容阅读
电力系统负荷预测是系统规划、设计和运行的有力支撑和重要保障。实际应用中,存在由于数据采集设备故障、系统突发事件导致相关数据资料不准确,使得短期负荷预测的精度不高。文中提出基于小波变换的长短期记忆神经网络WT-LSTM(Wavelet Transform-Long Short-Term Memory)负荷短期负荷方法,利用小波变换的时频特性对负荷数据的伸缩变换进行细化,实现高频系数量化处理;结合长短期记忆神经网络的梯度计算,从而提高负荷预测结果的精度。通过变电站负荷数据以及区域办公楼实验实际负荷进行实验分析