论文部分内容阅读
针对经典区域增长算法中生长规则以及特征选取困难的问题,提出基于可拒识双层支持向量机模型的多目标并行区域增长图像分割算法。首先交互选择多个不同区域的种子点,并交互选择属于每个目标区域的子块和非目标区域的子块形成双层支持向量机训练样本;然后利用这些已知的训练样本训练双层支持向量分类器;在区域增长过程中,首先利用第一层的最大间隔超平面的支持向量分类器(SVC)进行分类判决,对属于该区域的点再利用第二层的支持向量域数据选择器(SVDD)进行拒识或接受处理,最后利用两层分类器的结果进行综合判决。为避免初始种子