论文部分内容阅读
为实现作物叶片病害的准确识别,该研究以PlantVillage工程开源数据库中14种作物38类叶片为研究对象,从网络规模小型化和计算过程轻量化需求的角度出发,对经典轻量级卷积神经网络SqueezeNet提出改进措施,包括修改最后一层卷积层的输出、删除经典模型中的后3个fire模块并修改fire模块5的参数、调节fire模块中expand层中1×1和3×3的卷积核数目的比例、移动部分fire模块在模型中的位置等措施,共获取5种改进的病害叶片检测模型,并运用迁移学习和随机梯度下降算法进行训练。试验结果表