论文部分内容阅读
The unprecedented liquefaction-related land damage during earthquakes has highlighted the need to develop a model that better interprets the liquefaction land damage vulnerability (LLDV) when determining whether liquefaction is likely to cause damage at the ground's surface.This paper presents the development of a novel comprehensive framework based on select case history records of cone penetration tests using a Bayesian belief network (BBN) methodology to assess seismic soil liquefaction and liquefaction land damage potentials in one model.The BBN-based LLDV model is developed by integrating multi-related factors of seismic soil liquefaction and its induced hazards using a machine learning (ML) algorithm-K2 and domain knowledge (DK) data fusion methodology.Compared with the C4.5 decision tree-J48 model,naive Bayesian (NB) classifier,and BBN-K2 ML prediction methods in terms of overall accuracy and the Cohen's kappa coefficient,the proposed BBN K2 and DK model has a better performance and provides a substitutive novel LLDV framework for characterizing the vulnerability of land to liquefaction-induced damage.The proposed model not only predicts quantitatively the seismic soil liquefaction potential and its ground damage potential probability but can also identify the main reasons and fault-finding state combinations,and the results are likely to assist in decisions on seismic risk mitigation measures for sustainable development.The proposed model is simple to perform in practice and provides a step toward a more sophisticated liquefaction risk assessment modeling.This study also interprets the BBN model sensitivity analysis and most probable explanation of seismic soil liquefied sites based on an engineering point of view.