论文部分内容阅读
提出了基于新的目标函数的模糊聚类建模方法.改进的模糊聚类方法把模糊模型结构辨识和参数辨识融为一体.首先,通过新的目标函数的最小化确定模糊模型的输入空间,即确定模糊规则和规则数、参数.然后对经模糊聚类得到的模糊前件推理矩阵进行QR分解,通过分析秩亏损确定重要的聚类规则.为了证明这种建模方法的性能,对非线性系统进行了仿真建模研究,仿真结果证明所提出方法是一种有效的、精确的模糊建模方法.