论文部分内容阅读
摘 要:2012年4月,沪深两所先后推出创业板退市制度和主板、中小板退市制度方案(征求意见稿),A股市场退市制度全面铺开,A股估值将不再以股本大小来排序,而是以综合绩效来排序。基于此,本文以新疆36家上市公司2011年的年度财务报表为依据,选取其中的14个财务指标构建上市公司绩效评价体系,运用因子分析法对其综合经营绩效进行了实证分析,并给出每家公司的具体排名情况。最后,在退市机制逐步健全大背景下,基于实证结果指出新疆上市公司存在的问题,并给出了相应的建议。
关键词:退市制度;因子分析;经营绩效评估;财务指标;上市公司
中图分类号:F832.51 文献标识码:A 文章编号:1003-9031(2012)11-0048-04 DOI:10.3969/j.issn.1003-9031.2012.11.11
截至2011年12月31日,新疆37家A股上市公司总市值达到2233.71亿元。资本市场已经成为新疆筹集经济建设资金的重要渠道之一,成为推动新疆新型工业化建设、加快新农村建设、拉动经济增长的一支重要力量,为促进新疆经济社会又好又快发展发挥重要作用。
一、文献综述及评价
目前国内、外对上市公司经营绩效研究已经具备了一定的基础,但仍存在一些问题:(1)对上市公司经营绩效评估指标的选取方面还没有达成一致。如张涛(2010)在对云南26家上市公司绩效评估时,虽然选取了15个相关财务指标[1],但是由于选取的指标存在过多的“共线性”,同时未把一些重要的指标囊括其中(如每股收益),从而导致提取出来的公因子对原始数据的信息总量的解释程度偏小(仅为75%),遗失了过多的信息。(2)选取指标的时间跨度有待商酌。如马胜春(2010)采用半年报财务数据对新疆33家上市公司的综合绩效进行评估[2]。由于许多上市公司天然的周期性,可能导致同一家公司的经营情况在一年内不同的季度之间存在显著差别,采取半年报数据进行评估,显然有失公允(本文的结论也证实了这一担忧)。(3)在评估上市公司经营绩效的方法论方面也存在一些不同的见解。杨兴辉、李俊衡(2009)在采用因子分析法对我国电力行业上市公司2009年一季度财务指标提取出公因子并计算其各自得分后,采用聚类分析对56家公司进行归类,最终将其划分为5类[3]。但采用聚类分析进行归类,并不能得到每家公司具体的经营情况或者更明确的结论。
基于此,本文运用新疆36家上市公司(截至2011年12月份共37家上市公司,除去宏源证券,因该公司已迁至北京)2011年年报数据中14个财务指标,基于因子分析视角,对他们的经营绩效情况进行综合评估。
二、模型介绍及实证分析
(一)因子分析法的基本原理
因子分析是多元统计分析的主干技术之一,它利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为几个少数综合因子。其目的在于从大量的自变量中寻找一些适合解释因变量的公共变量或虚拟变量,基于信息损失最小化原则,将众多原始变量浓缩为上述少数几个因子变量,使得变量具有更高的可解释性。
(二)因子分析法过程及实证结果
1.样本指标体系的建立及标准化
本文以36家上市公司为研究对象,借鉴国家财政部颁布的企业绩效评价体系,结合目前国内外优秀研究成果,选取14项指标建立本文的综合绩效评价指标体系,力求全面、完整、真实地反映新疆上市公司综合绩效排名状况①。在该指标体系中,流动比率、速动比率、资产负债率为适度指标,其他11个均为正向指标。因此,在分析前要对适度指标进行趋同化处理。同时,为了消除各指标之间的量纲及数值大小差异的影响,在趋同化后,要对所有指标进行标准化处理(本文采用Z-Score变化法),以构建标准化数据的相关系数矩阵。
2. 指标数据的适用性检验
进行因子分析之前要确定原有变量之间有较强的相关关系。通常采用的方法有:相关系数矩阵法、反映像相关矩阵法、巴特利球度检验和KMO检验法。本文采用第三种方法。其中使用巴特利球度检验和KMO检验的临界值分别为小于1%和大于0.6,检验结果如表1。
3.因子提取及因子载荷矩阵的求解
本文采用主成分分析法求解公因子特征值、方差贡献率及累计方差贡献率(见表2)。根据特征值大于1 及提取因子信息损失最小化原则,在累计方程贡献率大于80%的前提下最终确定了5个公因子。
4.公因子的命名与解释
由于在初始的公因子荷载矩阵中,公因子所对应的负载较大的指标信息无法使公因子具有较好的解释性,并据此进行命名,因此,为了更好地理解公因子的实际经济意义并对其命名,本文采用方差最大化正交旋转法对因子旋转,旋转前的碎石图及旋转后的因子载荷矩阵分别如图1和表3(为了便于观察,只给出了载荷绝对值大于0.3的主成份数据)。
采用最大方差法进行因子旋转得到的5个公因子具备了明确的解释能力,同时,结合其他研究文献中的命名方法和习惯[10],各公因子经济含义的确定及命名如表4。
5. 因子得分及得分函数建立
在上一步对因子经济意义解释的基础上,对因子进行定量描述,得到经VARIMAX法旋转后各个公因子的得分系数的回归估计值(见表5)。
在表5的基础上建立因子得分函数,求解因子得分的过程主要是通过观测指标的线性组合来表示因子,而因子得分就是观测指标的加权平均,权重的大小表示指标对因子的重要程度。得分函数的确定,本文采用回归法估计因子得分系数。根据因子得分系数矩阵与原始指标标准化值求解共因子得分的计算公式,下面只给出第一个公因子的得分函数,同样方法可以得到其余五个公因子的得分函数:
Z1=-0.018X1+0.300X2+0.049X3-0.115X4-0.058X5+0.020X6-0.093X7-0.018X8-0.021X9+0.350X10-0.137X11-0.090X12-0.105X13+0.350X14 6.新疆上市公司综合经营绩效得分
为了对新疆上市公司做出综合评价,需要对综合绩效得分进行定量计算,综合绩效得分进一步综合了5个公因子信息,与单个因子相比,可以对新疆上市公司经营绩效做出更为综合、更为全面的评估。本文采用的计算方法是:对所提取公因子得分按照相应的贡献比重进行加权平均求和。其权重为各因子的方差贡献率占诸因子总的累计方差贡献率的比重[11]。综合绩效得分的一般计算公式: 根据上述一般公式求得2011年新疆上市公司综合经营绩效得分计算公式:
Z综=0.246Z1+0.230Z2+0.220Z3+0.156Z4+0.148Z5
综上,得到新疆33 家上市公司按盈利水平、偿债能力、股本扩张、资产管理及成长性等各因子以及综合因子得分的排序结果(见表6)。
在表6给出36家上市公司的各公因子得分排名及综合得分排名的条件下,为了更好的反映该36上市公司各公因子指标的实际运营能力,本文把36家公司分为以下三类,并对这三类公司在五个因子及综合得分方面的平均得分进行计算(见表7)。
三、结论及建议
(一)结论
1.盈利因子得分在公司综合绩效评估中占的比重较大,一般讲盈利能力比较强的上市公司,综合绩效排名靠前。但是如果公司过于注重其盈利能力而忽视了其他方面的改善,也会对公司的发展及绩效排名带来不利影响。如盈利能力排在第3位的新研股份和第4位的天富热电,在综合排名方面仅仅位于第9和第10位。
2.研究发现,公司偿债能力与经营绩效呈现出一定的负相关关系,即偿债能力过强的公司,经营绩效反而不是太好。这可能是偿债能力过强的公司没有有效运用财务杠杆,没有使资金达到效益最大化,进而导致公司经营过于保守的缘故。
3.前期经营不善的上市公司,在经过外来资金的资产重组后,其经营发展水平一般会有显著地改善。近年来,渤海租赁和八一钢铁综合绩效的快速提升都证实了这一判断。
4.总体上看,新疆36家上市公司在股本扩张、资产管理以及成长性方面表现都相对令人满意,但是位于后5位公司的成长能力平均得分及平均综合得分都为负数,令人担忧。
5.综合排名位于前5名的公司,综合平均得分十分抢眼,很容易获得投资者的青睐。但是,必须看到它们的偿债能力及股本扩张能力都比较脆弱,意味着这些公司存在过分利用财务杠杆以求得公司较快的发展,会导致公司经营存在一定的财务风险,应引起投资者的关注。
(二)相关建议
首先,在今后的发展中,公司应在努力提高其盈利能力的前提下,兼顾其他经营和管理水平方面的改善,做到各方面的协调发展。其次,公司在保证自身不会出现财务风险的条件下,更多、更充分地运用财务杠杆,使得公司各种资源的配置达到最优。再次,在我国逐步健全A股市场退市机制的大背景下,对于目前排名比较靠后的上市公司,更应该着眼于公司管理结构的治理,尽快转变公司目前的不良状况,努力避免被退市警示乃止强行退市的风险。最后,公司还应该着眼自身的未来发展,努力提高自己的成长能力。
(特约编辑:罗洋)
参考文献:
[1]张涛.云南上市公司绩效和竞争力分析[J].云南财经大学学报(社会科学版),2010(6):76-77.
[2]马胜春.基于2010年中报的新疆上市公司绩效评价[J].铜陵学院学报,2010(6):38-39.
[3]杨兴辉,李俊衡.我国电力行业上市公司经营绩效评价研究[J].中国商界,2009(9):5-6.
[4]米子川.统计软件方法[M].北京:中国统计出版社,2005:223-224.
[5]孟建民.中国企业绩效评价[M].北京:中国财政经济出版社,2000:251-257.
[6]Joseph,F.,Haiv,J.R.et al. Multivaviafe Dafa Analysis With Readings[M].Prentice-Hall International,1995:374.
[7]薛薇.统计分析与SPSS的应用[M].北京:中国人民大学出版社,2011:323.
[8]张庆利.SPSS宝典[M].北京:电子工业出版社,2011:399-401.
[9]彭熠.我国农业上市公司经营绩效研究[M].北京:经济科学出版社,2008:75-76.
[10]林乐芬.中国农业上市公司绩效的实证分析[J].中国农村观察,2004(6):66-70.
[11]林海明,张文霖.主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷[J].统计研究,2005(3):65-69.
关键词:退市制度;因子分析;经营绩效评估;财务指标;上市公司
中图分类号:F832.51 文献标识码:A 文章编号:1003-9031(2012)11-0048-04 DOI:10.3969/j.issn.1003-9031.2012.11.11
截至2011年12月31日,新疆37家A股上市公司总市值达到2233.71亿元。资本市场已经成为新疆筹集经济建设资金的重要渠道之一,成为推动新疆新型工业化建设、加快新农村建设、拉动经济增长的一支重要力量,为促进新疆经济社会又好又快发展发挥重要作用。
一、文献综述及评价
目前国内、外对上市公司经营绩效研究已经具备了一定的基础,但仍存在一些问题:(1)对上市公司经营绩效评估指标的选取方面还没有达成一致。如张涛(2010)在对云南26家上市公司绩效评估时,虽然选取了15个相关财务指标[1],但是由于选取的指标存在过多的“共线性”,同时未把一些重要的指标囊括其中(如每股收益),从而导致提取出来的公因子对原始数据的信息总量的解释程度偏小(仅为75%),遗失了过多的信息。(2)选取指标的时间跨度有待商酌。如马胜春(2010)采用半年报财务数据对新疆33家上市公司的综合绩效进行评估[2]。由于许多上市公司天然的周期性,可能导致同一家公司的经营情况在一年内不同的季度之间存在显著差别,采取半年报数据进行评估,显然有失公允(本文的结论也证实了这一担忧)。(3)在评估上市公司经营绩效的方法论方面也存在一些不同的见解。杨兴辉、李俊衡(2009)在采用因子分析法对我国电力行业上市公司2009年一季度财务指标提取出公因子并计算其各自得分后,采用聚类分析对56家公司进行归类,最终将其划分为5类[3]。但采用聚类分析进行归类,并不能得到每家公司具体的经营情况或者更明确的结论。
基于此,本文运用新疆36家上市公司(截至2011年12月份共37家上市公司,除去宏源证券,因该公司已迁至北京)2011年年报数据中14个财务指标,基于因子分析视角,对他们的经营绩效情况进行综合评估。
二、模型介绍及实证分析
(一)因子分析法的基本原理
因子分析是多元统计分析的主干技术之一,它利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为几个少数综合因子。其目的在于从大量的自变量中寻找一些适合解释因变量的公共变量或虚拟变量,基于信息损失最小化原则,将众多原始变量浓缩为上述少数几个因子变量,使得变量具有更高的可解释性。
(二)因子分析法过程及实证结果
1.样本指标体系的建立及标准化
本文以36家上市公司为研究对象,借鉴国家财政部颁布的企业绩效评价体系,结合目前国内外优秀研究成果,选取14项指标建立本文的综合绩效评价指标体系,力求全面、完整、真实地反映新疆上市公司综合绩效排名状况①。在该指标体系中,流动比率、速动比率、资产负债率为适度指标,其他11个均为正向指标。因此,在分析前要对适度指标进行趋同化处理。同时,为了消除各指标之间的量纲及数值大小差异的影响,在趋同化后,要对所有指标进行标准化处理(本文采用Z-Score变化法),以构建标准化数据的相关系数矩阵。
2. 指标数据的适用性检验
进行因子分析之前要确定原有变量之间有较强的相关关系。通常采用的方法有:相关系数矩阵法、反映像相关矩阵法、巴特利球度检验和KMO检验法。本文采用第三种方法。其中使用巴特利球度检验和KMO检验的临界值分别为小于1%和大于0.6,检验结果如表1。
3.因子提取及因子载荷矩阵的求解
本文采用主成分分析法求解公因子特征值、方差贡献率及累计方差贡献率(见表2)。根据特征值大于1 及提取因子信息损失最小化原则,在累计方程贡献率大于80%的前提下最终确定了5个公因子。
4.公因子的命名与解释
由于在初始的公因子荷载矩阵中,公因子所对应的负载较大的指标信息无法使公因子具有较好的解释性,并据此进行命名,因此,为了更好地理解公因子的实际经济意义并对其命名,本文采用方差最大化正交旋转法对因子旋转,旋转前的碎石图及旋转后的因子载荷矩阵分别如图1和表3(为了便于观察,只给出了载荷绝对值大于0.3的主成份数据)。
采用最大方差法进行因子旋转得到的5个公因子具备了明确的解释能力,同时,结合其他研究文献中的命名方法和习惯[10],各公因子经济含义的确定及命名如表4。
5. 因子得分及得分函数建立
在上一步对因子经济意义解释的基础上,对因子进行定量描述,得到经VARIMAX法旋转后各个公因子的得分系数的回归估计值(见表5)。
在表5的基础上建立因子得分函数,求解因子得分的过程主要是通过观测指标的线性组合来表示因子,而因子得分就是观测指标的加权平均,权重的大小表示指标对因子的重要程度。得分函数的确定,本文采用回归法估计因子得分系数。根据因子得分系数矩阵与原始指标标准化值求解共因子得分的计算公式,下面只给出第一个公因子的得分函数,同样方法可以得到其余五个公因子的得分函数:
Z1=-0.018X1+0.300X2+0.049X3-0.115X4-0.058X5+0.020X6-0.093X7-0.018X8-0.021X9+0.350X10-0.137X11-0.090X12-0.105X13+0.350X14 6.新疆上市公司综合经营绩效得分
为了对新疆上市公司做出综合评价,需要对综合绩效得分进行定量计算,综合绩效得分进一步综合了5个公因子信息,与单个因子相比,可以对新疆上市公司经营绩效做出更为综合、更为全面的评估。本文采用的计算方法是:对所提取公因子得分按照相应的贡献比重进行加权平均求和。其权重为各因子的方差贡献率占诸因子总的累计方差贡献率的比重[11]。综合绩效得分的一般计算公式: 根据上述一般公式求得2011年新疆上市公司综合经营绩效得分计算公式:
Z综=0.246Z1+0.230Z2+0.220Z3+0.156Z4+0.148Z5
综上,得到新疆33 家上市公司按盈利水平、偿债能力、股本扩张、资产管理及成长性等各因子以及综合因子得分的排序结果(见表6)。
在表6给出36家上市公司的各公因子得分排名及综合得分排名的条件下,为了更好的反映该36上市公司各公因子指标的实际运营能力,本文把36家公司分为以下三类,并对这三类公司在五个因子及综合得分方面的平均得分进行计算(见表7)。
三、结论及建议
(一)结论
1.盈利因子得分在公司综合绩效评估中占的比重较大,一般讲盈利能力比较强的上市公司,综合绩效排名靠前。但是如果公司过于注重其盈利能力而忽视了其他方面的改善,也会对公司的发展及绩效排名带来不利影响。如盈利能力排在第3位的新研股份和第4位的天富热电,在综合排名方面仅仅位于第9和第10位。
2.研究发现,公司偿债能力与经营绩效呈现出一定的负相关关系,即偿债能力过强的公司,经营绩效反而不是太好。这可能是偿债能力过强的公司没有有效运用财务杠杆,没有使资金达到效益最大化,进而导致公司经营过于保守的缘故。
3.前期经营不善的上市公司,在经过外来资金的资产重组后,其经营发展水平一般会有显著地改善。近年来,渤海租赁和八一钢铁综合绩效的快速提升都证实了这一判断。
4.总体上看,新疆36家上市公司在股本扩张、资产管理以及成长性方面表现都相对令人满意,但是位于后5位公司的成长能力平均得分及平均综合得分都为负数,令人担忧。
5.综合排名位于前5名的公司,综合平均得分十分抢眼,很容易获得投资者的青睐。但是,必须看到它们的偿债能力及股本扩张能力都比较脆弱,意味着这些公司存在过分利用财务杠杆以求得公司较快的发展,会导致公司经营存在一定的财务风险,应引起投资者的关注。
(二)相关建议
首先,在今后的发展中,公司应在努力提高其盈利能力的前提下,兼顾其他经营和管理水平方面的改善,做到各方面的协调发展。其次,公司在保证自身不会出现财务风险的条件下,更多、更充分地运用财务杠杆,使得公司各种资源的配置达到最优。再次,在我国逐步健全A股市场退市机制的大背景下,对于目前排名比较靠后的上市公司,更应该着眼于公司管理结构的治理,尽快转变公司目前的不良状况,努力避免被退市警示乃止强行退市的风险。最后,公司还应该着眼自身的未来发展,努力提高自己的成长能力。
(特约编辑:罗洋)
参考文献:
[1]张涛.云南上市公司绩效和竞争力分析[J].云南财经大学学报(社会科学版),2010(6):76-77.
[2]马胜春.基于2010年中报的新疆上市公司绩效评价[J].铜陵学院学报,2010(6):38-39.
[3]杨兴辉,李俊衡.我国电力行业上市公司经营绩效评价研究[J].中国商界,2009(9):5-6.
[4]米子川.统计软件方法[M].北京:中国统计出版社,2005:223-224.
[5]孟建民.中国企业绩效评价[M].北京:中国财政经济出版社,2000:251-257.
[6]Joseph,F.,Haiv,J.R.et al. Multivaviafe Dafa Analysis With Readings[M].Prentice-Hall International,1995:374.
[7]薛薇.统计分析与SPSS的应用[M].北京:中国人民大学出版社,2011:323.
[8]张庆利.SPSS宝典[M].北京:电子工业出版社,2011:399-401.
[9]彭熠.我国农业上市公司经营绩效研究[M].北京:经济科学出版社,2008:75-76.
[10]林乐芬.中国农业上市公司绩效的实证分析[J].中国农村观察,2004(6):66-70.
[11]林海明,张文霖.主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷[J].统计研究,2005(3):65-69.