论文部分内容阅读
Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg-Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge/discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh/g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase.
Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg- Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge / discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh / g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase.