论文部分内容阅读
本文研究了射影平坦Finsler空间的几何量及其几何性质。证明了射影平坦Finsler空间的Ricci曲率可完全由射影因子简洁地刻画出来。同时还证明了,在射影平坦Finsler空间中,平均Berwald曲率S=0意味着Ricci曲率Ric是二次齐次的。此外,给出了一个射影平坦Finsler空间成为常曲率空间或局部Minkowski空间的充分条件。