论文部分内容阅读
以滁州市为例,结合水稻物候的特征波段,选用反映水稻物候期时相的TM数据,并基于多特征波段,构建CART决策树分类提取水稻种植面积。结果表明,植被指数、湿度因子、绿度因子、纹理特征等多特征参与CART决策树分类能够提高总体精度。基于光谱信息、植被指数和纹理特征的决策树分类的总精度比以最大似然法进行的监督分类方法提高了6.942 1百分点,Kappa系数提高了0.110 4。合理选用作物物候期数据及其遥感影像的特征波段能够有效降低分类误差,为地形复杂地区获取作物种植面积提新的方法。