论文部分内容阅读
开发了一套基于计算机视觉技术的稻谷品质检测系统,采用灰度变换、自动阈值分割、区域标记等方法从采集的稻米群体图像中提取单体米粒图像,对单体米粒的裂纹、垩白特征进行了统计和检测方法研究。提取了米粒的面积、周长等10个特征参数作为整精米检测特征,并进行了主成分分析,确定了判别整精米的优化阈值。检测试验结果表明:裂纹米粒识别的准确率为96.41%;垩白米粒识别的准确率为94.79%;整精米识别的准确率为96.20%。