论文部分内容阅读
准确可靠的过程模型是实现发酵过程优化的基础和前提.对于反应机理复杂的发酵过程,串联混合建模是一种相对有效的建模方法,但现有方法需要利用插值所得的数据进行中间变量黑箱模型的构建,较大程度地影响了所建混合模型的泛化性能.为此,提出一种可将黑箱模型构建问题转化为动态模型参数辨识问题的同步串联混合建模方法,从而避免了现有方法需利用插值数据来构建黑箱模型的不足;通过引入多精英学习策略和惯性权重自适应调整策略,构造了一种改进的粒子群优化(Particle swarm optimization,PSO)算法—自适应多精英学习PSO(Adaptive multi-elite learning PSO,AMLPSO)算法,并采用该算法求取黑箱模型的参数;借鉴均匀设计思想确定黑箱模型的结构.利用诺西肽分批发酵过程实际生产数据进行实验研究,结果验证了所提方法的有效性.