论文部分内容阅读
为了实现在遥感图像处理过程中准确地提取到有效地物信息,缩短分类用时,将卷积神经网络(CNN)模型引入遥感图像地物分类,首先提出由图片模糊加权平均(PFWG)改进的CNN分类方法,利用模糊几何聚类算法作为预处理单元对实验样本进行特征规划,并对遥感地物信息进行多源特征决策,简化了分类过程,加快了CNN模型的收敛速度。实验结果表明,利用PFWG改进的CNN分类方法总体分类精度达到了93.73%;Kappa系数为0.94。该方法有效地弥补了CNN自身对遥感图像分类不够细腻、表达效果差的缺点,较好地完成了多光