论文部分内容阅读
通过添加树平衡系数、设定节点不纯度和区分样本类型,对现有的随机决策树群算法进行了改进,提出了改进的随机决策树群算法。以广东省龙门县土地覆盖的ALOS遥感影像为研究对象,利用改进的随机决策树群算法对研究对象进行遥感监督分类,并将研究结果同传统的最大似然分类方法的结果进行对比,发现分类总体精度从81.46%提高至92.45%,Kappa系数达0.9091。改进的随机决策树群算法考虑了极不均衡决策树、节点不纯度和训练样本区分对随机决策过程运行效率的影响,可有效提高遥感分类效率和分类精度。