论文部分内容阅读
针对水下机器人多传感器并发故障检测问题,提出了一种小波分析和神经网络相结合的故障特征提取方法,将小波多分辨率分解后的细节系数进行小波重构,对重构后的细节系数进行融合得到整体高频细节信息量作为一类故障特征值;同时,基于改进的Elman网络建立水下机器人的全阶状态观测器模型,模型输出与传感器测量值之间的差值作为另一类故障特征值.为进行水下机器人多传感器并发故障定位,提出了一种模糊加权属性信息融合方法,将两类故障特征值的重要度与可信度进行模糊合成转换,基于转换结果将各故障特征值加权融合,进行水下机器人多传