论文部分内容阅读
近些年信用卡的违约情况呈现逐年上升的趋势,使商业银行面临严重的经营风险,商业银行若想在信用卡业务中获得利润,必须控制信用卡的违约率。关于信用卡违约的研究主要围绕信用评级展开,鉴于传统单一分类器预测模型拟合不足或过拟合的缺陷,提出改进后的随机森林预测模型,并在实证分析中与KNN、逻辑回归、决策树和GBDT相比较。模型提高了信用卡违约识别率,降低了违约风险,对提高商业银行的风险管控能力具有积极意义。