论文部分内容阅读
设p是给定的素数,运用初等数论方法证明了方程x3-53=3py2有适合gcd(x,y)=1的正整数解(x,y)的充要条件是p=Q(27a4+45a2+25),其中a是正整数,Q(27a4+45a2+25)是27a4+45a2+25的无平方因子部分.由此可知,当p≠7或13(mod30)时,该方程没有适合gcd(x,y)=1的正整数解(x,y).