论文部分内容阅读
决策树算法是数据挖掘领域的一个研究热点,通常用来形成分类器和预测模型,在实际中有着广泛的应用。重点阐述了经典的ID3决策树算法,分析了它的优缺点,结合泰勒公式和麦克劳林公式提出了新的属性选择标准。改进后的算法通过简化信息熵的计算,提高了分类准确度,缩短了决策树的生成时间,减少了计算成本。实验证明,改进后算法的有效性和正确性。