论文部分内容阅读
摘要: 該研究采用傅里叶变换红外光谱结合化学计量学,对条播、撒播、剪根后移栽、扦插和剪枝后移栽的滇龙胆进行了分析,以筛选滇龙胆的最佳栽培方式。结果表明:(1)不同栽培方式的滇龙胆原始谱图在峰形、峰位和峰强上有一定差异;用小波去噪法对光谱进行优化处理并进行偏最小二乘判别分析(Partial least squares discriminant analysis, PLSDA),能较好地区分不同栽培方式的滇龙胆样品,PLSDA二维得分图显示同一栽培方式的样品聚在一起,表明相同栽培方式的滇龙胆化学组成和含量差异较小;播种滇龙胆样品(条播和撒播)距离较近,移栽滇龙胆样品(剪根、扦插和剪枝)距离较近,而播种和移栽滇龙胆样品距离较远,表明栽培方式对滇龙胆化学成分的积累有影响。(2)滇龙胆四种主要成分总含量大小依次是剪枝>剪根>撒播>条播>扦插,除剪根后移栽,剪枝后移栽滇龙胆中四种主要成分总含量显著高于其他栽培方式下的滇龙胆(P<0.05),剪枝后移栽滇龙胆质量最佳。(3)以液相数据为参考值,采用正交信号校正—偏最小二乘回归模型预测不同栽培模式滇龙胆中龙胆苦苷、马钱苷酸、獐牙菜苦苷和当药苷的含量。校正集和验证集的决定系数(R2)均大于0.90,校正均方根误差、交叉验证均方差和预测均方根误差均小于1.65,模型相关性和预测效果好,该方法对红外光谱分析在中药领域的推广应用提供了参考。
关键词: 傅里叶变换红外光谱, 偏最小二乘判别分析, 正交信号校正-偏最小二乘法, 栽培方式, 滇龙胆
中图分类号: Q945
文献标识码: A
文章编号: 10003142(2017)05061008
Abstract: Medicinal plants are the resources of traditional Chinese medicines (TCM), and selecting appropriate cultivation method is conductive to guarantee the quality of TCM from the source. In this research, in order to select optimal cultivation method for the Gentiana rigescens, Fourier transform infrared (FTIR) spectroscopy combined with chemometrics was used for analyzing the G. rigescens which were cultivated through sowing in drill, broadcast sowing, transplanting after root pruning, cutting and transplanting after pruning. The results were as follows: (1) Original FTIR spectra of G. rigescens from different cultivation methods had some differences in shape, position and intensity of peak. After preprocessed with the wavelet denoising, the spectral data were analyzed by partial least squares discriminant analysis (PLSDA), and samples with different cultivation methods could be distinguished well. The results of PLSDA demonstrated that samples with the same cultivation method could be grouped well. It suggested that the difference between chemical constituents and content of G. rigescens with the same cultivation method were relatively low. The G. rigescens through sowing (sowing in drill and broadcast sowing) were relatively close, so were the G. rigescens through transplanting (root pruning, cutting and pruning). However, samples by sowing were far from that of transplanting. It showed that cultivation method influence the accumulation of chemical constituents of G. rigescens. (2) The total content of four main components in G. rigescens was decreased in the order of pruning, root pruning, broadcast sowing, sowing in drill and cutting, and was significantly higher in samples through pruning than that of others except for root pruning (P<0.05). The G. rigescens through pruning could obtain optimum quality. (3) Based on the reference data performed by liquid chromatography, orthogonal signal correctionpartial least squares (OSCPLS) models were established for predicting the content of gentiopicroside, loganic acid, swertiamarin and sweroside in G. rigescens from different cultivation methods. Both of the determination coefficients (R2) of calibration and validation sets were above 0.90, root mean square error of estimation (RMSEE), root mean squared error of crossvalidation (RMSECV) and RMSEP were below 1.65. It demonstrated that the models showed good linear correlation and prediction accuracy. It provides the reference for the popularization and application of infrared spectroscopy in the field of TCM. Key words: Fourier transform infrared spectroscopy, partial least squares discriminant analysis, orthogonal signal correctionpartial least squares, cultivation methods, Gentiana rigescens
中藥在预防、治疗疾病和保障人类健康方面已显现出巨大的实际应用潜力,质量稳定可控是保证中药安全有效的重要前提(Liu et al, 2015)。中药品种繁多,化学成分十分复杂,且易受产地、栽培方式、加工、污染(重金属、农药、细菌、真菌等)、储藏等(Liu et al, 2008; Zhang et al, 2012)诸多因素的影响,其中栽培方式与药材质量关系紧密。Wang et al(2012)的研究显示采用条播能显著提高太子参质量。Singh et al(2008)研究表明银杏通过种子繁殖生长缓慢,扦插是其较为合适的繁殖方式。Saglam et al(2004)对香蜂花育苗移栽和扦插繁殖两种方式的比较研究发现,采用育苗移栽(行株距40 cm×20 cm)香蜂花产量(11 167 kg·hm2)在第二年达最高。因此,选择合理栽培方式有利于从源头上保证中药质量,促进中药的规模化和产业化发展。
在中药质量研究中,主要采用DNA条形码技术、气相色谱—质谱(GCMS)法、超高效液相色谱—串联质谱(UPLCMS/MS)法、红外光谱(IR)法、毛细管电泳技术(CE)、高效液相色谱—紫外/荧光/蒸发光散射检测法(HPLCUV/FD/ELSD)、液相色谱—核磁共振(LCNMR)联用技术等(Jiang et al, 2010; Hu et al, 2014; Liang et al, 2009; Pan et al, 2015)。近年来,红外光谱以简便快速、样品无需复杂预处理、可同时测定多组分、能反映分析物的整体结构信息等优势,(Botelho et al, 2015; Hirri et al, 2015; Musingarabwi et al, 2015; SzymanskaChargot et al, 2015)在石油化工(Wang et al, 2015; dos Santos Grasel et al, 2016)、生命科学(Abramovich & Shulzinger, 2015)、农产品(Yu et al, 2015; RasinesPerea et al, 2015)、燃料与能源(Mazivila et al, 2015; Odeh, 2015; Bekiaris et al, 2015)、医药(Zhao et al, 2014; Chavez et al, 2015; Chadha et al, 2015; Rohaeti et al, 2015)等领域的应用受到普遍重视。
2015年版《中国药典》收载的滇龙胆(Gentiana rigescens)为龙胆科(Gentianaceae)龙胆属多年生、须根肉质草本植物,药用部位为根及根茎,其味苦、性寒,归肝、胆经,具有清热燥湿、泻肝胆火之功效,用于惊风抽搐、湿热黄疸、胁痛口苦等病症的治疗(国家药典委员会, 2015)。现代植物化学及药理研究发现滇龙胆含有丰富的环烯醚萜苷和裂环烯醚萜苷,其中龙胆苦苷、马钱苷酸、獐牙菜苦苷和当药苷是其主要的化学成分。该类物质具有抗细胞凋亡、抗炎镇痛、预防肝衰竭、利胆、抗真菌等多种功效(Lian et al, 2010; Zhao et al, 2015; Xu et al, 2007; Xu et al, 2009),是中药龙胆质量评价的主要指标(Pan et al, 2015; Wang et al, 2012; Pan et al, 2015)。由于野生生境日益恶化和人类无节制采挖,滇龙胆野生资源量锐减,已被列为国家重点保护野生药材物种(三级),云南10个重要濒危药用植物之一(李智敏等, 2009)。因此,在云南省部分县市兴起了滇龙胆的人工栽培,且已形成一定规模。而人工栽培滇龙胆因病害侵染、自身繁殖缺陷(种子萌发率低、分蘖繁殖能力低)、复合种植模式、栽培技术等因素影响,导致产量、质量参差不齐。目前,有关滇龙胆栽培方式(移栽、条播和撒播)筛选的研究尚未见报道。本研究采用傅里叶变换红外光谱结合化学计量学对条播、撒播、扦插、剪根和剪枝等栽培方式的滇龙胆样品进行分析,筛选最适合滇龙胆生长的栽培方式,为中药滇龙胆的规范化栽培提供科学依据。
1材料与方法
1.1 材料
2012年11月采自临沧市永德县云南省农业科学院药用植物研究所滇龙胆种植示范基地(99°42′21.50″ E,24°12′29.40″ N,海拔2 347 m),涉及条播、撒播、剪枝后移栽、扦插和剪根后移栽5种栽培方式的29份滇龙胆样品(种植年限均为3 a),样品信息详见表1。所有样品经云南省农业科学院药用植物研究所金航研究员鉴定为龙胆科龙胆属植物滇龙胆(Gentiana rigescens)的芦头。
1.2 仪器与试剂
Frontier型傅里叶变换红外光谱仪(Perkin Elmer公司),配备DTGS检测器;YP2压片机(上海山岳科学仪器有限公司);CS101型电热鼓风干燥箱(浙江余姚温度仪表四厂);日本岛津液相色谱仪(LC30AD),配备二极管阵列紫外检测器;MilliQ超纯水系统(美国Millipore公司)。
对照品马钱苷酸、龙胆苦苷、獐牙菜苦苷、当药苷均购自中国食品药品检定研究院(批号依次为111865201403,110770201313,10785201203,111742201101);甲醇、甲酸和乙腈均为色谱纯,KBr为分析纯,水为自制超纯水。 1.3 样品制备及光谱采集
不同栽培方式的滇龙胆样品干燥(60 ℃)磨碎后装于密封袋。精密称取样品粉末0.001 5 g与KBr粉末0.100 0 g放入瑪瑙研钵中,充分研磨、混匀后经YP2压片机制成厚度均匀的透明KBr薄片;仪器预热30 min,扣除空白KBr背景后测定光谱,光谱扫描范围为4 000~400 cm1,累计扫描次数16次,分辨率为4 cm1,每个样品平行制备5份样品片,共采集5种栽培方式的滇龙胆样品谱图145个。
1.4 色谱条件
采用岛津Shimpack XRODS III(75×2.0 mm, 1.6 μm)色谱柱,流动相A为0.1%甲酸,流动相B为乙腈,流速为0.35 mL·min1,柱温为40 ℃,进样量为2.00 μL,检测波长为248 nm;梯度洗脱程序为0~0.01 min 23% B;0.01~7.50 min 23%~39% B;7.50~17.00 min 39%~63% B;17.00~19.00 min 63%~87% B和19.00~20.00 min 85% B。
2结果与分析
2.1 红外光谱分析
图1显示,不同栽培方式滇龙胆样品在3 395、2 925、2 854、1 735、1 613、1 423、1 267、1 070、928 cm1处有多个共有峰。3 395 cm1附近较宽的谱带吸收峰为OH的伸缩振动峰,1 423 cm1为OH的面内弯曲振动吸收峰,2 925和2 854 cm1为亚甲基中CH的反对称和对称伸缩振动吸收峰,1 735 cm1为羰基C=O伸缩振动吸收峰,1 613和1 070 cm1附近的强吸收峰为龙胆苦苷的主要吸收峰(杨红霞等, 2014),分别代表芳环中C=C骨架振动吸收峰和糖环中COC伸缩振动吸收峰。
从整体上看,尽管在峰形、峰位和峰强上有一定差异,但直接通过谱图难以鉴别不同栽培方式下的滇龙胆样品,因此,需借助化学计量学方法建立判别模型。PLSDA是一种基于PLS的有监督模式判别方法,能对多维复杂数据进行降维,提取特征信息,该法以二进制的类别变量作为Y变量,X变量为预测变量,预先将研究对象按原始类别属性进行分组,再建立判别分析模型(PérezEnciso & Tenenhaus, 2003)。原始光谱经自动基线校正、自动平滑、纵坐标归一化和小波去噪预处理后进行PLSDA分析,结果见图2。从该图2可以看出,(1)同一栽培方式的滇龙胆样品能很好的聚在一起,相同栽培方式下的滇龙胆样品可能在化学成分种类或含量上相似;(2)条播和撒播两种栽培方式下的滇龙胆样品相对聚集,扦插、剪枝和剪根后移栽的滇龙胆样品距离较近,条播和撒播(播种)的滇龙胆样品与扦插、剪枝和剪根(移栽)的滇龙胆样品距离较远。
2.2 四种主要成分含量测定
参照2015年版《中国药典》龙胆药材中龙胆苦苷的含量测定方法,得标准品及样品色谱图(图3)。以马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷为对照,以峰面积为纵坐标(y),溶液浓度为横坐标(x)绘制标准曲线。
计算回归方程:y马钱苷酸=7 115.122 2 x+24.800 7,R2=0.999 9; y獐牙菜苦苷=7 976.867 9 x+25.167 3, R2=
0.999 9;y龙胆苦苷=5 830.281 7 x+164.995 3,R2=0.999 9;y当药苷=4 250.239 6 x-2.056 9,R2=0.999 9。
称取滇龙胆粉末0.025 0 mg置于具塞试管中,加80%甲醇2.50 mL,30 ℃下超声提取40 min,按“1.4”项下色谱条件进行测定,每个样品平行测定3次,根据标准曲线回归方程计算各栽培方式下四种主要成分的平均含量(表2)。由表2可知,扦插苗根中马钱苷酸和龙胆苦苷含量最低,分别为(1.06 ± 0.54)、(26.88 ± 4.47) mg
·g1,通过剪枝处理后移栽的滇龙胆中二者含量最高,分别为(4.24 ± 2.05)、(39.20 ± 0.57) mg
·g1;除剪根后移栽的滇龙胆外,剪枝后移栽的滇龙胆中马钱苷酸和龙胆苦苷含量显著高于其他栽培方式下的滇龙胆(P<0.05,下同),四种活性成分总含量也显著高于其他栽培方式下的滇龙胆;不同栽培方式滇龙胆中獐牙菜苦苷含量差异不显著(P>0.05,下同)。
2.3 OSCPLS模型的建立和分析
将29个滇龙胆样品的145个原始红外光谱数据经OMINIC 8.2软件进行自动基线校正、自动平滑、纵坐标归一化预处理,并计算得其平均光谱数据,将光谱数据导入Matlab中通过KennardStone法筛选校正集 (2/3,20)和验证集(1/3,9); 用正交信号校正(Orthogonal signal correction, OSC)对光谱进行处理,滤除与Y变量不相关的正交主成分,简化数据结构,提高模型的可解释性(Niazi & Azizi, 2008; Yu & MacGregor, 2004)。建模时,主成分数(Number of principal component, PCs)的选择对模型的优劣有重要影响,PCs太少,模型预测能力差;PCs太多,则易出现过拟合现象。PCs的确定取决于RMSECV和R2,RMSECV越小,R2越接近1时的PCs为最优(Pande & Mishra, 2015);RMSEP越小,模型预测效果越好。分别以29个样品中马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷为Y变量,基于SIMCAP+ 13.0软件建立OSCPLS模型,并用Origin 9.0软件作图(图4)。按照上述PCs选取原则,马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷的含量预测模型最优PCs分别为3、8、3和4,校正集R2依次是0.91、1.00、0.95和0.98,RMSEE和RMSECV均小于1.65,验证集R2依次是0.94、0.97、0.99和1.00,RMSEP分别为0.65、0.04、1.21和0.02,其中R2均较接近1,表明红外预测值与参考值(液相数据)较接近,RMSEE、RMSECV和RMSEP均较小,该模型能对不同栽培方式滇龙胆中马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷四种主要成分含量进行很好的预测。 3讨论
本研究结果表明播种(条播和撒播)和移栽(扦插、剪枝和剪根)滇龙胆距离较远,差异较大,其中,播种属于有性繁殖,移栽为无性繁殖。肖承鸿等(2013)的研究显示,有性繁殖和无性繁殖的太子参次生代谢产物太子参环肽B含量存在显著差异。据此可推测,滇龙胆样品距离较远可能是因繁殖方式不同而引起的化学成分或含量上的差异。
本研究栽培方式影响滇龙胆的质量,不同栽培方式的滇龙胆中龙胆苦苷、马钱苷酸、獐牙菜苦苷和当药苷含量有差异,从这四种主要活性成分的总含量来看,剪枝>剪根>撒播>条播>扦插,即剪枝后移栽的滇龙胆品质较佳。Marasha et al(2013)的研究表明剪枝影响药用植物Athrixia phylicoides的产量、化学组成和生物活性,影响则有利有弊。Maudu(2010) 研究指出剪枝使Athrixia phylicoides中总多酚含量降低,而未剪枝和不同程度剪枝处理对单宁酸和总抗氧化物含量影响不显著。Andersen(2001)的研究表明剪根处理对欧洲山毛榉的生长和成活率有影响,剪根程度加重,根系受损伤加大,幼苗死亡率增加,欧洲山毛榉不宜进行剪根处理。综上所述,同一栽培方式对不同植物的影响有差异,需根据植物自身特点,筛选合适的栽培方式;剪枝和剪根后移栽还应考虑剪枝程度、剪根程度以及苗木的成活率。移栽成活率、剪枝和剪根程度、栽培環境等因素对滇龙胆质量的影响还有待深入研究。具体实践中,还应考虑不同栽培方式的劳作强度,减轻农民劳作强度具有重要现实意义。
此外,采用FTIR结合OSCPLS建立了滇龙胆中四种主要成分的定量分析模型,模型相关性和预测效果好,基于OSCPLS法能建立准确的滇龙胆主要成分含量红外预测模型,可为大批量滇龙胆中主要成分的含量测定提供一种新的方法,同时也为红外光谱分析在中药领域的推广应用提供依据。
参考文献:
ABRAMOVICH A, SHULZINGER A, 2015. Diagnostic and analysis of human sperm characteristics using Fourier transform infrared spectroscopy [J]. Open J Urol, 5(6): 97-101.
ANDERSEN L, 2001. Survival and growth of Fagus sylvatica seedlings rootpruned prior to transplanting under competitive conditions [J]. Scand J For Res, 16(4): 318-323.
BEKIARIS G, TRIOLO JM, PELTRE C, et al, 2015. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform midinfrared photoacoustic spectroscopy [J]. Bioresour Technol, 197: 475-481.
BOTELHO BG, REIS N, OLIVEIRA LS, et al, 2015. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using midinfrared spectroscopy and PLSDA [J]. Food Chem, 181: 31-37.
CHADHA R, HANEEF J, 2015. Near infrared spectroscopy: effective tool for screening of polymorphs in pharmaceuticals [J]. Appl Spectrosc Rev, 50(7): 565-583.
CHAVEZ PF, SACR PY, DE BLEYE C, et al, 2015. Active content determination of pharmaceutical tablets using near infrared spectroscopy as process analytical technology tool [J]. Talanta, 144: 1352-1359.
China Pharmacopoeia, 2015. Chinese pharmacopoeia of the People’s Republic of China (Part Ⅰ). Beijing: China Medical Science Press. [国家药典委员会,2015. 中华人民共和国药典(一部) [M]. 北京: 中国医药科技出版社.]
DOS SANTOS GRASEL F, FERRO MF, WOLF CR, 2016. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis [J]. Spectrochimica Acta Pt AMol Biol, 153: 94-101.
HIRRI A, BASSBASI M, PLATIKANOV S, et al,2016. FTIR spectroscopy and PLSDA classification and prediction of four commercial grade virgin olive oils from Morocco [J]. Food Anal Method, 9(4): 974-981. HU Y, KONG W, YANG X, et al,2014. GCMS combined with chemometric techniques for the quality control and original discrimination of Curcumae longae rhizome: analysis of essential oils [J]. J Sep Sci, 37(4): 404-411.
JIANG Y, DAVID B, TU P, et al, 2010. Recent analytical approaches in quality control of traditional Chinese medicines—a review [J]. Anal Chim Acta, 657(1): 9-18.
LI ZM, LIU L, LI WY, et al, 2009. Progress on research and development of G. rigescens as a raw material [J]. J Yunnan Univ (Nat Sci Ed), (S1): 485-487. [李智敏, 刘莉, 李晚谊, 等, 2009. 滇龍胆的药用资源研究与开发进展 [J]. 云南大学学报(自然科学版), (S1): 485-487.]
LIAN LH, WU YL, WAN Y, et al, 2010. Antiapoptotic activity of gentiopicroside in Dgalactosamine/lipopolysaccharideinduced murine fulminant hepatic failure [J]. Chemboil Inter, 188(1): 127-133.
LIANG X, JIN Y, WANG Y, et al, 2009. Qualitative and quantitative analysis in quality control of traditional Chinese medicines [J]. J Chromatogr A, 1216(11): 2033-2044.
LIU D, LI YG, XU H, et al, 2008. Differentiation of the root of cultivated ginseng, mountain cultivated ginseng and mountain wild ginseng using FTIR and twodimensional correlation IR spectroscopy [J]. J Mol Struct, 883: 228-235.
LIU SH, CHUANG WC, LAM W, et al, 2015. Safety surveillance of traditional Chinese medicine: current and future [J]. Drug Safety, 38(2): 117-128.
MARASHA N, MARIGA IK, NGEZIMANA W, et al, 2013. Effect of pruning on carbohydrate dynamics of herbal and medicinal plant species: prospects leading to research on the influence of pruning on productivity and biochemical composition of bush tea (Athrixia phylicoides DC) [J]. Afr J Agr, 8(27): 3528-3533.
MAUDU ME, 2010. Chemical profiles of bush tea (Athrixia Phylicoides DC.) at different phenological stages and as influenced by pruning and growth regulators [D]. Limpopo: University of Limpopo.
MAZIVILA SJ, DE SANTANA FB, MITSUTAKE H, et al, 2015. Discrimination of the type of biodiesel/diesel blend (B5) using midinfrared spectroscopy and PLSDA [J]. Fuel, 142: 222-226.
MUSINGARABWI DM, NIEUWOUDT HH, YOUNG PR, et al,2016. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fouriertransform infrared spectroscopy and multivariate data analysis [J]. Food Chem, 190: 253-262.
NIAZI A, AZIZI A, 2008. Orthogonal signal correctionpartial least squares method for simultaneous spectrophotometric determination of nickel, cobalt, and zinc [J]. Turk J Chem, 32(2): 217-228. ODEH AO, 2015. Oualitative and quantitative ATRFTIR analysis and its application to coal char of different ranks [J]. J Fuel Chem Technol, 43(2): 129-137.
PAN Y, SHEN T, ZHANG J, et al, 2015. Simultaneous determination of six index constituents and comparative analysis of four ethnomedicines from genus Gentiana using a UPLCUVMS method [J]. Biomed Chromatogr, 29(1): 87-96.
PAN Y, ZHANG J, SHEN T, et al,2015. Liquid chromatography tandem mass spectrometry combined with Fourier transform midinfrared spectroscopy and chemometrics for comparative analysis of raw and processed Gentiana rigescens [J]. J Liq Chromatogr Relat Technol, 38(14): 1407-1416.
PAN Y, ZHANG J, SHEN T, et al, 2015. Optimization of ultrasonic extraction by response surface methodology combined with ultrafast liquid chromatographyultraviolet method for determination of four iridoids in Gentiana rigescens [J]. J Food Drug Anal, 23(3): 529-537.
PANDE R, MISHRA HN, 2015. Fourier transform nearinfrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata) [J]. Food Chem, 172: 880-884.
PREZENCISO M, TENENHAUS M, 2003. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLSDA) approach [J]. Hum Genet, 112(5-6): 581-592.
RASINESPEREA Z, PRIETOPEREA N, ROMERAFERNNDEZ M, et al, 2015. Fast determination of anthocyanins in red grape musts by Fourier transform midinfrared spectroscopy and partial least squares regression [J]. Eur Food Res Technol, 240(5): 897-908.
ROHAETI E, RAFI M, SYAFITRI UD, et al, 2015. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar [J]. Spectrochim Acta Pt AMol Biol, 137: 1244-1249.
SAGLAM C, ATAKISI I, TURHAN H, et al, 2004. Effect of propagation method, plant density, and age on lemon balm (Melissa officinalis) herb and oil yield [J]. New Zeal J Crop Hort, 32(4): 419-423.
SINGH B, KAUR P, SINGH RD, et al,2008. Biology and chemistry of Ginkgo biloba [J]. Fitoterapia, 79(6): 401-418.
SZYMANSKACHARGOT M, CHYLINSKA M, KRUK B, et al, 2015. Combining FTIR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development [J]. Carbohyd Polym, 115: 93-103.
WANG L, LIU E, CHENG Y, et al, 2015. Novel methodologies for automatically and simultaneously determining BTEX components using FTIR spectra [J]. Talanta, 144: 1104-1110. WANG YM, XU M, WANG D, et al, 2012. Review on “LongDan”, one of the traditional Chinese medicinal herbs recorded in Chinese Pharmacopoeia [J]. Nat Prod Bioprospect, 2(1): 1-10.
WANG ZP, CHEN JX, YU BQ, et al, 2012. Effects of soil improvement and planting pattern on the yield of Radix Pseudostellariae [J]. Med Plant, 3(9): 1-2, 5.
XIAO CH, ZHOU T, JIANG WK, et al, 2013. Dynamic accumulation of biomass and secondary metabolites of Pesudostellaria heterophylla in Guizhou Province [J]. Chin Pharm J, 48(16): 27-32. [肖承鴻, 周涛, 江维克, 等, 2013. 贵州太子参生物量与次生代谢物积累的动态变化分析 [J]. 中国药学杂志, 48(16): 27-32.]
XU M, WANG D, ZHANG YJ, et al, 2007. Dammarane triterpenoids from the roots of Gentiana rigescens [J]. J Nat Prod, 70(5): 880-883.
XU M, YANG CR, ZHANG YJ, 2009. Minor antifungal aromatic glycosides from the roots of Gentiana rigescens (Gentianaceae) [J]. Chin Chem Lett, 20(10): 1215-1217.
YANG HX, MA F, DU YZ, et al, 2014. Study on the Tibetan medicine Swertia mussotii Franch and its extracts by Fourier transform infrared spectroscopy [J]. Spectrosc Spectr Anal, 34(11): 2973-2977. [杨红霞, 马芳, 杜玉枝, 等, 2014. 藏药川西獐牙菜及其不同提取物的红外光谱分析 [J]. 光谱学与光谱分析, 34(11): 2973-2977.]
YU H, MACGREGOR JF, 2004. Post processing methods (PLSCCA): simple alternatives to preprocessing methods (OSCPLS) [J]. Chemometr Intell Lab Syst, 73(2): 199-205.
YU XZ, LI QH, SUN DJ, et al, 2015. Determination of the peroxide value of edible oils by FTIR spectroscopy using polyethylene films [J]. Anal Method, 7(5): 1727-1731.
ZHANG J, WIDER B, SHANG H, et al, 2012. Quality of herbal medicines: challenges and solutions [J]. Complement Ther Med, 20(1): 100-106.
ZHAO YL, ZHANG J, JIN H, et al,2015. Discrimination of Gentiana rigescens from different origins by Fourier transform infrared spectroscopy combined with chemometric methods [J]. J AOAC Int, 98(1): 22-26.
ZHAO YL, ZHANG J, YUAN TJ, et al,2014. Discrimination of wild Paris based on near infrared spectroscopy and high performance liquid chromatography combined with multivariate analysis [J]. PLoS ONE, 9(2): e89100.
关键词: 傅里叶变换红外光谱, 偏最小二乘判别分析, 正交信号校正-偏最小二乘法, 栽培方式, 滇龙胆
中图分类号: Q945
文献标识码: A
文章编号: 10003142(2017)05061008
Abstract: Medicinal plants are the resources of traditional Chinese medicines (TCM), and selecting appropriate cultivation method is conductive to guarantee the quality of TCM from the source. In this research, in order to select optimal cultivation method for the Gentiana rigescens, Fourier transform infrared (FTIR) spectroscopy combined with chemometrics was used for analyzing the G. rigescens which were cultivated through sowing in drill, broadcast sowing, transplanting after root pruning, cutting and transplanting after pruning. The results were as follows: (1) Original FTIR spectra of G. rigescens from different cultivation methods had some differences in shape, position and intensity of peak. After preprocessed with the wavelet denoising, the spectral data were analyzed by partial least squares discriminant analysis (PLSDA), and samples with different cultivation methods could be distinguished well. The results of PLSDA demonstrated that samples with the same cultivation method could be grouped well. It suggested that the difference between chemical constituents and content of G. rigescens with the same cultivation method were relatively low. The G. rigescens through sowing (sowing in drill and broadcast sowing) were relatively close, so were the G. rigescens through transplanting (root pruning, cutting and pruning). However, samples by sowing were far from that of transplanting. It showed that cultivation method influence the accumulation of chemical constituents of G. rigescens. (2) The total content of four main components in G. rigescens was decreased in the order of pruning, root pruning, broadcast sowing, sowing in drill and cutting, and was significantly higher in samples through pruning than that of others except for root pruning (P<0.05). The G. rigescens through pruning could obtain optimum quality. (3) Based on the reference data performed by liquid chromatography, orthogonal signal correctionpartial least squares (OSCPLS) models were established for predicting the content of gentiopicroside, loganic acid, swertiamarin and sweroside in G. rigescens from different cultivation methods. Both of the determination coefficients (R2) of calibration and validation sets were above 0.90, root mean square error of estimation (RMSEE), root mean squared error of crossvalidation (RMSECV) and RMSEP were below 1.65. It demonstrated that the models showed good linear correlation and prediction accuracy. It provides the reference for the popularization and application of infrared spectroscopy in the field of TCM. Key words: Fourier transform infrared spectroscopy, partial least squares discriminant analysis, orthogonal signal correctionpartial least squares, cultivation methods, Gentiana rigescens
中藥在预防、治疗疾病和保障人类健康方面已显现出巨大的实际应用潜力,质量稳定可控是保证中药安全有效的重要前提(Liu et al, 2015)。中药品种繁多,化学成分十分复杂,且易受产地、栽培方式、加工、污染(重金属、农药、细菌、真菌等)、储藏等(Liu et al, 2008; Zhang et al, 2012)诸多因素的影响,其中栽培方式与药材质量关系紧密。Wang et al(2012)的研究显示采用条播能显著提高太子参质量。Singh et al(2008)研究表明银杏通过种子繁殖生长缓慢,扦插是其较为合适的繁殖方式。Saglam et al(2004)对香蜂花育苗移栽和扦插繁殖两种方式的比较研究发现,采用育苗移栽(行株距40 cm×20 cm)香蜂花产量(11 167 kg·hm2)在第二年达最高。因此,选择合理栽培方式有利于从源头上保证中药质量,促进中药的规模化和产业化发展。
在中药质量研究中,主要采用DNA条形码技术、气相色谱—质谱(GCMS)法、超高效液相色谱—串联质谱(UPLCMS/MS)法、红外光谱(IR)法、毛细管电泳技术(CE)、高效液相色谱—紫外/荧光/蒸发光散射检测法(HPLCUV/FD/ELSD)、液相色谱—核磁共振(LCNMR)联用技术等(Jiang et al, 2010; Hu et al, 2014; Liang et al, 2009; Pan et al, 2015)。近年来,红外光谱以简便快速、样品无需复杂预处理、可同时测定多组分、能反映分析物的整体结构信息等优势,(Botelho et al, 2015; Hirri et al, 2015; Musingarabwi et al, 2015; SzymanskaChargot et al, 2015)在石油化工(Wang et al, 2015; dos Santos Grasel et al, 2016)、生命科学(Abramovich & Shulzinger, 2015)、农产品(Yu et al, 2015; RasinesPerea et al, 2015)、燃料与能源(Mazivila et al, 2015; Odeh, 2015; Bekiaris et al, 2015)、医药(Zhao et al, 2014; Chavez et al, 2015; Chadha et al, 2015; Rohaeti et al, 2015)等领域的应用受到普遍重视。
2015年版《中国药典》收载的滇龙胆(Gentiana rigescens)为龙胆科(Gentianaceae)龙胆属多年生、须根肉质草本植物,药用部位为根及根茎,其味苦、性寒,归肝、胆经,具有清热燥湿、泻肝胆火之功效,用于惊风抽搐、湿热黄疸、胁痛口苦等病症的治疗(国家药典委员会, 2015)。现代植物化学及药理研究发现滇龙胆含有丰富的环烯醚萜苷和裂环烯醚萜苷,其中龙胆苦苷、马钱苷酸、獐牙菜苦苷和当药苷是其主要的化学成分。该类物质具有抗细胞凋亡、抗炎镇痛、预防肝衰竭、利胆、抗真菌等多种功效(Lian et al, 2010; Zhao et al, 2015; Xu et al, 2007; Xu et al, 2009),是中药龙胆质量评价的主要指标(Pan et al, 2015; Wang et al, 2012; Pan et al, 2015)。由于野生生境日益恶化和人类无节制采挖,滇龙胆野生资源量锐减,已被列为国家重点保护野生药材物种(三级),云南10个重要濒危药用植物之一(李智敏等, 2009)。因此,在云南省部分县市兴起了滇龙胆的人工栽培,且已形成一定规模。而人工栽培滇龙胆因病害侵染、自身繁殖缺陷(种子萌发率低、分蘖繁殖能力低)、复合种植模式、栽培技术等因素影响,导致产量、质量参差不齐。目前,有关滇龙胆栽培方式(移栽、条播和撒播)筛选的研究尚未见报道。本研究采用傅里叶变换红外光谱结合化学计量学对条播、撒播、扦插、剪根和剪枝等栽培方式的滇龙胆样品进行分析,筛选最适合滇龙胆生长的栽培方式,为中药滇龙胆的规范化栽培提供科学依据。
1材料与方法
1.1 材料
2012年11月采自临沧市永德县云南省农业科学院药用植物研究所滇龙胆种植示范基地(99°42′21.50″ E,24°12′29.40″ N,海拔2 347 m),涉及条播、撒播、剪枝后移栽、扦插和剪根后移栽5种栽培方式的29份滇龙胆样品(种植年限均为3 a),样品信息详见表1。所有样品经云南省农业科学院药用植物研究所金航研究员鉴定为龙胆科龙胆属植物滇龙胆(Gentiana rigescens)的芦头。
1.2 仪器与试剂
Frontier型傅里叶变换红外光谱仪(Perkin Elmer公司),配备DTGS检测器;YP2压片机(上海山岳科学仪器有限公司);CS101型电热鼓风干燥箱(浙江余姚温度仪表四厂);日本岛津液相色谱仪(LC30AD),配备二极管阵列紫外检测器;MilliQ超纯水系统(美国Millipore公司)。
对照品马钱苷酸、龙胆苦苷、獐牙菜苦苷、当药苷均购自中国食品药品检定研究院(批号依次为111865201403,110770201313,10785201203,111742201101);甲醇、甲酸和乙腈均为色谱纯,KBr为分析纯,水为自制超纯水。 1.3 样品制备及光谱采集
不同栽培方式的滇龙胆样品干燥(60 ℃)磨碎后装于密封袋。精密称取样品粉末0.001 5 g与KBr粉末0.100 0 g放入瑪瑙研钵中,充分研磨、混匀后经YP2压片机制成厚度均匀的透明KBr薄片;仪器预热30 min,扣除空白KBr背景后测定光谱,光谱扫描范围为4 000~400 cm1,累计扫描次数16次,分辨率为4 cm1,每个样品平行制备5份样品片,共采集5种栽培方式的滇龙胆样品谱图145个。
1.4 色谱条件
采用岛津Shimpack XRODS III(75×2.0 mm, 1.6 μm)色谱柱,流动相A为0.1%甲酸,流动相B为乙腈,流速为0.35 mL·min1,柱温为40 ℃,进样量为2.00 μL,检测波长为248 nm;梯度洗脱程序为0~0.01 min 23% B;0.01~7.50 min 23%~39% B;7.50~17.00 min 39%~63% B;17.00~19.00 min 63%~87% B和19.00~20.00 min 85% B。
2结果与分析
2.1 红外光谱分析
图1显示,不同栽培方式滇龙胆样品在3 395、2 925、2 854、1 735、1 613、1 423、1 267、1 070、928 cm1处有多个共有峰。3 395 cm1附近较宽的谱带吸收峰为OH的伸缩振动峰,1 423 cm1为OH的面内弯曲振动吸收峰,2 925和2 854 cm1为亚甲基中CH的反对称和对称伸缩振动吸收峰,1 735 cm1为羰基C=O伸缩振动吸收峰,1 613和1 070 cm1附近的强吸收峰为龙胆苦苷的主要吸收峰(杨红霞等, 2014),分别代表芳环中C=C骨架振动吸收峰和糖环中COC伸缩振动吸收峰。
从整体上看,尽管在峰形、峰位和峰强上有一定差异,但直接通过谱图难以鉴别不同栽培方式下的滇龙胆样品,因此,需借助化学计量学方法建立判别模型。PLSDA是一种基于PLS的有监督模式判别方法,能对多维复杂数据进行降维,提取特征信息,该法以二进制的类别变量作为Y变量,X变量为预测变量,预先将研究对象按原始类别属性进行分组,再建立判别分析模型(PérezEnciso & Tenenhaus, 2003)。原始光谱经自动基线校正、自动平滑、纵坐标归一化和小波去噪预处理后进行PLSDA分析,结果见图2。从该图2可以看出,(1)同一栽培方式的滇龙胆样品能很好的聚在一起,相同栽培方式下的滇龙胆样品可能在化学成分种类或含量上相似;(2)条播和撒播两种栽培方式下的滇龙胆样品相对聚集,扦插、剪枝和剪根后移栽的滇龙胆样品距离较近,条播和撒播(播种)的滇龙胆样品与扦插、剪枝和剪根(移栽)的滇龙胆样品距离较远。
2.2 四种主要成分含量测定
参照2015年版《中国药典》龙胆药材中龙胆苦苷的含量测定方法,得标准品及样品色谱图(图3)。以马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷为对照,以峰面积为纵坐标(y),溶液浓度为横坐标(x)绘制标准曲线。
计算回归方程:y马钱苷酸=7 115.122 2 x+24.800 7,R2=0.999 9; y獐牙菜苦苷=7 976.867 9 x+25.167 3, R2=
0.999 9;y龙胆苦苷=5 830.281 7 x+164.995 3,R2=0.999 9;y当药苷=4 250.239 6 x-2.056 9,R2=0.999 9。
称取滇龙胆粉末0.025 0 mg置于具塞试管中,加80%甲醇2.50 mL,30 ℃下超声提取40 min,按“1.4”项下色谱条件进行测定,每个样品平行测定3次,根据标准曲线回归方程计算各栽培方式下四种主要成分的平均含量(表2)。由表2可知,扦插苗根中马钱苷酸和龙胆苦苷含量最低,分别为(1.06 ± 0.54)、(26.88 ± 4.47) mg
·g1,通过剪枝处理后移栽的滇龙胆中二者含量最高,分别为(4.24 ± 2.05)、(39.20 ± 0.57) mg
·g1;除剪根后移栽的滇龙胆外,剪枝后移栽的滇龙胆中马钱苷酸和龙胆苦苷含量显著高于其他栽培方式下的滇龙胆(P<0.05,下同),四种活性成分总含量也显著高于其他栽培方式下的滇龙胆;不同栽培方式滇龙胆中獐牙菜苦苷含量差异不显著(P>0.05,下同)。
2.3 OSCPLS模型的建立和分析
将29个滇龙胆样品的145个原始红外光谱数据经OMINIC 8.2软件进行自动基线校正、自动平滑、纵坐标归一化预处理,并计算得其平均光谱数据,将光谱数据导入Matlab中通过KennardStone法筛选校正集 (2/3,20)和验证集(1/3,9); 用正交信号校正(Orthogonal signal correction, OSC)对光谱进行处理,滤除与Y变量不相关的正交主成分,简化数据结构,提高模型的可解释性(Niazi & Azizi, 2008; Yu & MacGregor, 2004)。建模时,主成分数(Number of principal component, PCs)的选择对模型的优劣有重要影响,PCs太少,模型预测能力差;PCs太多,则易出现过拟合现象。PCs的确定取决于RMSECV和R2,RMSECV越小,R2越接近1时的PCs为最优(Pande & Mishra, 2015);RMSEP越小,模型预测效果越好。分别以29个样品中马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷为Y变量,基于SIMCAP+ 13.0软件建立OSCPLS模型,并用Origin 9.0软件作图(图4)。按照上述PCs选取原则,马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷的含量预测模型最优PCs分别为3、8、3和4,校正集R2依次是0.91、1.00、0.95和0.98,RMSEE和RMSECV均小于1.65,验证集R2依次是0.94、0.97、0.99和1.00,RMSEP分别为0.65、0.04、1.21和0.02,其中R2均较接近1,表明红外预测值与参考值(液相数据)较接近,RMSEE、RMSECV和RMSEP均较小,该模型能对不同栽培方式滇龙胆中马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷四种主要成分含量进行很好的预测。 3讨论
本研究结果表明播种(条播和撒播)和移栽(扦插、剪枝和剪根)滇龙胆距离较远,差异较大,其中,播种属于有性繁殖,移栽为无性繁殖。肖承鸿等(2013)的研究显示,有性繁殖和无性繁殖的太子参次生代谢产物太子参环肽B含量存在显著差异。据此可推测,滇龙胆样品距离较远可能是因繁殖方式不同而引起的化学成分或含量上的差异。
本研究栽培方式影响滇龙胆的质量,不同栽培方式的滇龙胆中龙胆苦苷、马钱苷酸、獐牙菜苦苷和当药苷含量有差异,从这四种主要活性成分的总含量来看,剪枝>剪根>撒播>条播>扦插,即剪枝后移栽的滇龙胆品质较佳。Marasha et al(2013)的研究表明剪枝影响药用植物Athrixia phylicoides的产量、化学组成和生物活性,影响则有利有弊。Maudu(2010) 研究指出剪枝使Athrixia phylicoides中总多酚含量降低,而未剪枝和不同程度剪枝处理对单宁酸和总抗氧化物含量影响不显著。Andersen(2001)的研究表明剪根处理对欧洲山毛榉的生长和成活率有影响,剪根程度加重,根系受损伤加大,幼苗死亡率增加,欧洲山毛榉不宜进行剪根处理。综上所述,同一栽培方式对不同植物的影响有差异,需根据植物自身特点,筛选合适的栽培方式;剪枝和剪根后移栽还应考虑剪枝程度、剪根程度以及苗木的成活率。移栽成活率、剪枝和剪根程度、栽培環境等因素对滇龙胆质量的影响还有待深入研究。具体实践中,还应考虑不同栽培方式的劳作强度,减轻农民劳作强度具有重要现实意义。
此外,采用FTIR结合OSCPLS建立了滇龙胆中四种主要成分的定量分析模型,模型相关性和预测效果好,基于OSCPLS法能建立准确的滇龙胆主要成分含量红外预测模型,可为大批量滇龙胆中主要成分的含量测定提供一种新的方法,同时也为红外光谱分析在中药领域的推广应用提供依据。
参考文献:
ABRAMOVICH A, SHULZINGER A, 2015. Diagnostic and analysis of human sperm characteristics using Fourier transform infrared spectroscopy [J]. Open J Urol, 5(6): 97-101.
ANDERSEN L, 2001. Survival and growth of Fagus sylvatica seedlings rootpruned prior to transplanting under competitive conditions [J]. Scand J For Res, 16(4): 318-323.
BEKIARIS G, TRIOLO JM, PELTRE C, et al, 2015. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform midinfrared photoacoustic spectroscopy [J]. Bioresour Technol, 197: 475-481.
BOTELHO BG, REIS N, OLIVEIRA LS, et al, 2015. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using midinfrared spectroscopy and PLSDA [J]. Food Chem, 181: 31-37.
CHADHA R, HANEEF J, 2015. Near infrared spectroscopy: effective tool for screening of polymorphs in pharmaceuticals [J]. Appl Spectrosc Rev, 50(7): 565-583.
CHAVEZ PF, SACR PY, DE BLEYE C, et al, 2015. Active content determination of pharmaceutical tablets using near infrared spectroscopy as process analytical technology tool [J]. Talanta, 144: 1352-1359.
China Pharmacopoeia, 2015. Chinese pharmacopoeia of the People’s Republic of China (Part Ⅰ). Beijing: China Medical Science Press. [国家药典委员会,2015. 中华人民共和国药典(一部) [M]. 北京: 中国医药科技出版社.]
DOS SANTOS GRASEL F, FERRO MF, WOLF CR, 2016. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis [J]. Spectrochimica Acta Pt AMol Biol, 153: 94-101.
HIRRI A, BASSBASI M, PLATIKANOV S, et al,2016. FTIR spectroscopy and PLSDA classification and prediction of four commercial grade virgin olive oils from Morocco [J]. Food Anal Method, 9(4): 974-981. HU Y, KONG W, YANG X, et al,2014. GCMS combined with chemometric techniques for the quality control and original discrimination of Curcumae longae rhizome: analysis of essential oils [J]. J Sep Sci, 37(4): 404-411.
JIANG Y, DAVID B, TU P, et al, 2010. Recent analytical approaches in quality control of traditional Chinese medicines—a review [J]. Anal Chim Acta, 657(1): 9-18.
LI ZM, LIU L, LI WY, et al, 2009. Progress on research and development of G. rigescens as a raw material [J]. J Yunnan Univ (Nat Sci Ed), (S1): 485-487. [李智敏, 刘莉, 李晚谊, 等, 2009. 滇龍胆的药用资源研究与开发进展 [J]. 云南大学学报(自然科学版), (S1): 485-487.]
LIAN LH, WU YL, WAN Y, et al, 2010. Antiapoptotic activity of gentiopicroside in Dgalactosamine/lipopolysaccharideinduced murine fulminant hepatic failure [J]. Chemboil Inter, 188(1): 127-133.
LIANG X, JIN Y, WANG Y, et al, 2009. Qualitative and quantitative analysis in quality control of traditional Chinese medicines [J]. J Chromatogr A, 1216(11): 2033-2044.
LIU D, LI YG, XU H, et al, 2008. Differentiation of the root of cultivated ginseng, mountain cultivated ginseng and mountain wild ginseng using FTIR and twodimensional correlation IR spectroscopy [J]. J Mol Struct, 883: 228-235.
LIU SH, CHUANG WC, LAM W, et al, 2015. Safety surveillance of traditional Chinese medicine: current and future [J]. Drug Safety, 38(2): 117-128.
MARASHA N, MARIGA IK, NGEZIMANA W, et al, 2013. Effect of pruning on carbohydrate dynamics of herbal and medicinal plant species: prospects leading to research on the influence of pruning on productivity and biochemical composition of bush tea (Athrixia phylicoides DC) [J]. Afr J Agr, 8(27): 3528-3533.
MAUDU ME, 2010. Chemical profiles of bush tea (Athrixia Phylicoides DC.) at different phenological stages and as influenced by pruning and growth regulators [D]. Limpopo: University of Limpopo.
MAZIVILA SJ, DE SANTANA FB, MITSUTAKE H, et al, 2015. Discrimination of the type of biodiesel/diesel blend (B5) using midinfrared spectroscopy and PLSDA [J]. Fuel, 142: 222-226.
MUSINGARABWI DM, NIEUWOUDT HH, YOUNG PR, et al,2016. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fouriertransform infrared spectroscopy and multivariate data analysis [J]. Food Chem, 190: 253-262.
NIAZI A, AZIZI A, 2008. Orthogonal signal correctionpartial least squares method for simultaneous spectrophotometric determination of nickel, cobalt, and zinc [J]. Turk J Chem, 32(2): 217-228. ODEH AO, 2015. Oualitative and quantitative ATRFTIR analysis and its application to coal char of different ranks [J]. J Fuel Chem Technol, 43(2): 129-137.
PAN Y, SHEN T, ZHANG J, et al, 2015. Simultaneous determination of six index constituents and comparative analysis of four ethnomedicines from genus Gentiana using a UPLCUVMS method [J]. Biomed Chromatogr, 29(1): 87-96.
PAN Y, ZHANG J, SHEN T, et al,2015. Liquid chromatography tandem mass spectrometry combined with Fourier transform midinfrared spectroscopy and chemometrics for comparative analysis of raw and processed Gentiana rigescens [J]. J Liq Chromatogr Relat Technol, 38(14): 1407-1416.
PAN Y, ZHANG J, SHEN T, et al, 2015. Optimization of ultrasonic extraction by response surface methodology combined with ultrafast liquid chromatographyultraviolet method for determination of four iridoids in Gentiana rigescens [J]. J Food Drug Anal, 23(3): 529-537.
PANDE R, MISHRA HN, 2015. Fourier transform nearinfrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata) [J]. Food Chem, 172: 880-884.
PREZENCISO M, TENENHAUS M, 2003. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLSDA) approach [J]. Hum Genet, 112(5-6): 581-592.
RASINESPEREA Z, PRIETOPEREA N, ROMERAFERNNDEZ M, et al, 2015. Fast determination of anthocyanins in red grape musts by Fourier transform midinfrared spectroscopy and partial least squares regression [J]. Eur Food Res Technol, 240(5): 897-908.
ROHAETI E, RAFI M, SYAFITRI UD, et al, 2015. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar [J]. Spectrochim Acta Pt AMol Biol, 137: 1244-1249.
SAGLAM C, ATAKISI I, TURHAN H, et al, 2004. Effect of propagation method, plant density, and age on lemon balm (Melissa officinalis) herb and oil yield [J]. New Zeal J Crop Hort, 32(4): 419-423.
SINGH B, KAUR P, SINGH RD, et al,2008. Biology and chemistry of Ginkgo biloba [J]. Fitoterapia, 79(6): 401-418.
SZYMANSKACHARGOT M, CHYLINSKA M, KRUK B, et al, 2015. Combining FTIR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development [J]. Carbohyd Polym, 115: 93-103.
WANG L, LIU E, CHENG Y, et al, 2015. Novel methodologies for automatically and simultaneously determining BTEX components using FTIR spectra [J]. Talanta, 144: 1104-1110. WANG YM, XU M, WANG D, et al, 2012. Review on “LongDan”, one of the traditional Chinese medicinal herbs recorded in Chinese Pharmacopoeia [J]. Nat Prod Bioprospect, 2(1): 1-10.
WANG ZP, CHEN JX, YU BQ, et al, 2012. Effects of soil improvement and planting pattern on the yield of Radix Pseudostellariae [J]. Med Plant, 3(9): 1-2, 5.
XIAO CH, ZHOU T, JIANG WK, et al, 2013. Dynamic accumulation of biomass and secondary metabolites of Pesudostellaria heterophylla in Guizhou Province [J]. Chin Pharm J, 48(16): 27-32. [肖承鴻, 周涛, 江维克, 等, 2013. 贵州太子参生物量与次生代谢物积累的动态变化分析 [J]. 中国药学杂志, 48(16): 27-32.]
XU M, WANG D, ZHANG YJ, et al, 2007. Dammarane triterpenoids from the roots of Gentiana rigescens [J]. J Nat Prod, 70(5): 880-883.
XU M, YANG CR, ZHANG YJ, 2009. Minor antifungal aromatic glycosides from the roots of Gentiana rigescens (Gentianaceae) [J]. Chin Chem Lett, 20(10): 1215-1217.
YANG HX, MA F, DU YZ, et al, 2014. Study on the Tibetan medicine Swertia mussotii Franch and its extracts by Fourier transform infrared spectroscopy [J]. Spectrosc Spectr Anal, 34(11): 2973-2977. [杨红霞, 马芳, 杜玉枝, 等, 2014. 藏药川西獐牙菜及其不同提取物的红外光谱分析 [J]. 光谱学与光谱分析, 34(11): 2973-2977.]
YU H, MACGREGOR JF, 2004. Post processing methods (PLSCCA): simple alternatives to preprocessing methods (OSCPLS) [J]. Chemometr Intell Lab Syst, 73(2): 199-205.
YU XZ, LI QH, SUN DJ, et al, 2015. Determination of the peroxide value of edible oils by FTIR spectroscopy using polyethylene films [J]. Anal Method, 7(5): 1727-1731.
ZHANG J, WIDER B, SHANG H, et al, 2012. Quality of herbal medicines: challenges and solutions [J]. Complement Ther Med, 20(1): 100-106.
ZHAO YL, ZHANG J, JIN H, et al,2015. Discrimination of Gentiana rigescens from different origins by Fourier transform infrared spectroscopy combined with chemometric methods [J]. J AOAC Int, 98(1): 22-26.
ZHAO YL, ZHANG J, YUAN TJ, et al,2014. Discrimination of wild Paris based on near infrared spectroscopy and high performance liquid chromatography combined with multivariate analysis [J]. PLoS ONE, 9(2): e89100.