论文部分内容阅读
提出了一种融合深度学习与规则的民族工艺品领域实体识别方法.首先通过BERT预训练语言模型获得语义向量;然后将其输入到BiLSTM-CRF序列标注模型中训练并预测初步结果;最后根据领域特点提出相应的规则对错误预测结果校正.实验结果表明,在自建的民族工艺品数据集上获得的准确率、召回率和F1值分别为95.43%、90.88%和93.10%,可以有效地提取民族文本中命名实体信息.