Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by r

来源 :农业科学学报(英文版) | 被引量 : 0次 | 上传用户:vvx888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Setosphaeria turcica (syn. Exserohilum turcicum) is the pathogenic fungus of maize (Zea mays) that causes northern leaf blight, which is a major maize disease worldwide. Melanized appressoria are highly specialized infection structures formed by germinated conidia of S. turcica that infect maize leaves. The appressorium penetrates the plant cuticle by generating turgor, and glycerol is known to be the main source of the turgor. Here, the infection position penetrated by the appressorium on maize leaves was investigated, most of the germinated conidia entered the leaf interior by directly penetrating the epidermal cells, and the appressorium structure was necessary for the infection, whether it occurred through epidermal cells or stomata. Then, to investigate the effects of key factors in the development of the appressorium, we studied the effects of three inhibitors, including a melanin inhibitor (tricyclazole, TCZ), a DNA replication inhibitor (hydroxyurea, HU), and an autophagy inhibitor (3-methyladenine, 3-MA), on appressorium turgor and glycerol content. As results, appressorium turgor pressure and glycerol concentration in the appressorium reached their highest levels at the mature stage of the appressorium under the control and inhibitor treatments. The three inhibitors had the greatest effects on appressorium turgor pressure at this stage. Glycogen and liposomes are the main substances producing glycerol. It was also found inhibitors affected the distribution of glycogen and liposomes, which were detected in the conidia, the germ tube, and the appressorium during appressorium development. This study provides profound insight into the relationship between appressorium turgor pressure and glycerol content, which was affected by the synthesis of melanin, DNA replication, and autophagy in the developing appressorium during a S. turcica infection.
其他文献
To cope with a highly heterogeneous light environment, photosynthesis in plants can be regulated systemically. Currently, the majority of studies are carried out with various plants during the vegetative growth period. As the reproductive sink improves ph
Strong seedlings are essential for high yield. To explore the foundation of strong seedlings, we investigated various factors influencing the conversion and distribution of seed storage reserves during seedling establishment in maize inbred lines. Three m
A number of plant pathogenic species of Phytophthora are known to produce different classes of secretory proteins during interactions with their hosts. Although several small cysteine-rich (SCR) secretory proteins, conserved in oomycete pathogens, have be
Dopamine is a catecholamine and an anti-oxidant which functions in responses to stress and it interacts with plant hormones to mediate plant development. At present, there are few studies on the functions of dopamine in apple. This study developed a metho
Chemosensory proteins (CSPs) are important molecular components of the insect olfactory system, which are involved in capturing, binding, and transporting hydrophobic odour molecules across the sensillum in sensillar lymph in regulating insect behavior. T
Nitrate reductase (NR) is a key enzyme for nitrogen assimilation in plants, and its activity is regulated by posttranslational phosphorylation. To investigate the effects of dephosphorylation of the NIA1 protein on the growth and the physiological and bio
Manual fruit thinning (MFT) in fruit trees has been previously shown to increase fruit size and enhance fruit quality, but the effect of MFT on Ponkan (Citrus reticulata Blanco) and the underlying mechanisms remain poorly understood. In this study, effort
Spring regrowth is an important trait for perennial plants including alfalfa, the most cultivated forage legume worldwide. However, the genetic and genomic basis of the trait is largely unknown in alfalfa due to its complex genetic background of the tetro
While SlPti5 has been shown to play a crucial role in the regulation of antagonistic genes in Solanum lycopersicum and Arabidopsis against pathogen infection, there have been no comprehensive studies on the effects of SlPti5 on the regulatory response mec
Soil organic carbon (SOC) and nitrogen (N) are two of the most important indicators for agricultural productivity. The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile (up to 100 cm) and their relationsh