论文部分内容阅读
利用种子区域增长对超声乳腺肿瘤图像进行分割是一种常用的计算机辅助诊断方法。为实现种子点的自动快速定位,满足实时在线分割图像的需求,根据超声乳腺肿瘤图像的结构特征,综合图像的灰度因素和空间因素,提出了一种基于迭代四叉树分解的算法。该算法将满足特定阈值的图像分裂转化为寻找种子区域,以实现种子点的自动定位。对105幅超声乳腺肿瘤图像进行了实验验证,结果表明,该算法准确率能够达到94.28%,平均耗时2.97 s,不但满足了种子点的自动定位于图像肿瘤内部,而且需要调整的参数少,其定位效率要高于人工选择。